March 24, 2025

Vital Path Care

Together for Your Health

Distinct brain network features predict internalizing and externalizing traits in children, adolescents and adults

Distinct brain network features predict internalizing and externalizing traits in children, adolescents and adults
  • Achenbach, T. M. The child behavior profile: I. Boys aged 6–11. J. Consult. Clin. Psychol. 46, 478–488 (1978).

    Article 
    PubMed 

    Google Scholar 

  • Achenbach, T. M. Manual for the Child Behavior Checklist/ 4–18 and 1991 Profile (Univ. Vermont, Department of Psychiatry, 1991).

    Google Scholar 

  • Duprey, E. B., Oshri, A. & Liu, S. Developmental pathways from child maltreatment to adolescent suicide-related behaviors: the internalizing and externalizing comorbidity hypothesis. Dev. Psychopathol. 32, 945–959 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Commisso, M. et al. Childhood externalizing, internalizing and comorbid problems: distinguishing young adults who think about suicide from those who attempt suicide. Psychol. Med. (2021).

  • Papachristou, E. & Flouri, E. The codevelopment of internalizing symptoms, externalizing symptoms, and cognitive ability across childhood and adolescence. Dev. Psychopathol. 32, 1375–1389 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Narusyte, J., Ropponen, A., Alexanderson, K. & Svedberg, P. Internalizing and externalizing problems in childhood and adolescence as predictors of work incapacity in young adulthood. Soc. Psychiatry Psychiatr. Epidemiol. 52, 1159 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sripada, C. et al. Prediction of neurocognition in youth from resting state fMRI. Mol. Psychiatry 25, 3413–3421 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shannon, B. J. et al. Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc. Natl Acad. Sci. USA 108, 11241–11245 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uddin, L. Q. et al. Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lake, E. M. R. et al. The functional brain organization of an individual allows prediction of measures of social abilities transdiagnostically in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 86, 315–326 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat. Commun. 13, 2217 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ooi, L. Q. R. et al. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. Neuroimage 263, 119636 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, K., Hallquist, M. N. & Luna, B. The development of hub architecture in the human functional brain network. Cereb. Cortex 23, 2380–2393 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Dong, H. M., Margulies, D. S., Zuo, X. N. & Holmes, A. J. Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence. Proc. Natl Acad. Sci. USA 118, e2024448118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Alexander, L. M. et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 170181 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Essen, D. C. et al. The WU-minn human connectome project: An overview. Neuroimage 80, 62 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Mackinnon, J. G. in Handbook of Computational Econometrics (eds Belsley, D. A. & Kontoghiorghes, E. J.) 183–213 (WIley, 2009); https://doi.org/10.1002/9780470748916.CH6

  • Achenbach, T. M. & Rescorla, L. A. Manual for ASEBA School-Age Forms & Profiles (ASEBA, 2001).

    Google Scholar 

  • Achenbach, T. M. & Rescorla, L. A. Manual for the ASEBA Adult Forms & Profiles (ASEBA, 2003).

    Google Scholar 

  • Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96–110 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Dhamala, E., Jamison, K. W., Jaywant, A. & Kuceyeski, A. Shared functional connections within and between cortical networks predict cognitive abilities in adult males and females. Hum. Brain Mapp. 43, 1087–1102 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Parkes, L. et al. Transdiagnostic dimensions of psychopathology explain individuals’ unique deviations from normative neurodevelopment in brain structure. Transl. Psychiatry 11, 232 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brislin, S. J. et al. Differentiated nomological networks of internalizing, externalizing, and the general factor of psychopathology (‘p factor’) in emerging adolescence in the ABCD study. Psychol. Med. 52, 3051–3061 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D. & Kramer, M. D. Linking antisocial behavior, substance use, and personality: an integrative quantitative model of the adult externalizing spectrum. J. Abnorm. Psychol. 116, 645–666 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eaton, N. R. et al. An invariant dimensional liability model of gender differences in mental disorder prevalence: evidence from a national sample. J. Abnorm. Psychol. 121, 282–288 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Achenbach, T. M. & Edelbrock, C. S. Psychopathology of childhood. Annu. Rev. Psychol. 35, 227–256 (2003).

    Article 

    Google Scholar 

  • Kessler, R. C. et al. Development of lifetime comorbidity in the world health organization world mental health surveys. Arch. Gen. Psychiatry 68, 90–100 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ringwald, W. R., Forbes, M. K. & Wright, A. G. C. Meta-analytic tests of measurement invariance of internalizing and externalizing psychopathology across common methodological characteristics. J. Psychopathol. Clin. Sci. 131, 847–856 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rosenberg, M. D., Finn, E. S., Scheinost, D., Constable, R. T. & Chun, M. M. Characterizing attention with predictive network models. Trends Cogn. Sci. 21, 290–302 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Satterthwaite, T. D. et al. Connectome-wide network analysis of youth with psychosis-spectrum symptoms. Mol. Psychiatry 20, 1508–1515 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pornpattananangkul, N., Leibenluft, E., Pine, D. S. & Stringaris, A. Association between childhood anhedonia and alterations in large-scale resting-state networks and task-evoked activation. JAMA Psychiatry 76, 624–633 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karcher, N. R., O’Brien, K. J., Kandala, S. & Barch, D. M. Resting-state functional connectivity and psychotic-like experiences in childhood: results from the adolescent brain cognitive development study. Biol. Psychiatry 86, 7–15 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, T. et al. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. Neuroimage 206, 116276 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Narumoto, J., Okada, T., Sadato, N., Fukui, K. & Yonekura, Y. Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Cogn. Brain Res. 12, 225–231 (2001).

    Article 

    Google Scholar 

  • Mellem, M. S., Jasmin, K. M., Peng, C. & Martin, A. Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia 89, 217–224 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Völlm, B. A. et al. Neuronal correlates of theory of mind and empathy: a functional magnetic resonance imaging study in a nonverbal task. Neuroimage 29, 90–98 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Bigler, E. D. et al. Superior temporal gyrus, language function, and autism. Dev. Neuropsychol. 31, 217–238 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Weinrich, M., Wise, S. P. & Mauritz, K. H. A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107, 385–414 (1984).

    Article 
    PubMed 

    Google Scholar 

  • Cunnington, R., Windischberger, C., Deecke, L. & Moser, E. The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20, 404–412 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kwan, H. C., MacKay, W. A., Murphy, J. T. & Wong, Y. C. Spatial organization of precentral cortex in awake primates. II. Motor outputs. J. Neurophysiol. 41, 1120–1131 (1978).

    Article 
    PubMed 

    Google Scholar 

  • Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article 

    Google Scholar 

  • Lees, B. et al. Altered neurocognitive functional connectivity and activation patterns underlie psychopathology in preadolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 387–398 (2021).

    PubMed 

    Google Scholar 

  • Grayson, D. S. & Fair, D. A. Development of large-scale functional networks from birth to adulthood: a guide to neuroimaging literature. Neuroimage 160, 15 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Galván, A. & Tottenham, N. in Developmental Psychopathology 3rd edn (ed. Cicchetti, D.) Ch. 18 (Wiley, 2016); https://doi.org/10.1002/9781119125556.DEVPSY218

  • Casey, B. J., Galván, A. & Somerville, L. H. Beyond simple models of adolescence to an integrated circuit-based account: a commentary. Dev. Cogn. Neurosci. 17, 128 (2016).

    Article 
    PubMed 

    Google Scholar 

  • van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, 1812 (2022).

    Article 

    Google Scholar 

  • Dhamala, E., Yeo, B. T. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Dhamala, E. et al. Brain-based predictions of psychiatric illness-linked behaviors across the sexes. Biol. Psychiatry (2023).

  • Auchter, A. M. et al. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 32, 8–15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, D. B. et al. Biomedical ethics and clinical oversight in multisite observational neuroimaging studies with children and adolescents: the ABCD experience. Dev. Cogn. Neurosci. 32, 143–154 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Li, J. et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. Neuroimage 196, 126–141 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Fischl, B., Liu, A. & Dale, A. M. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B. H. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Ségonne, F., Pacheco, J. & Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26, 518–529 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63 (2009).

    Article 
    PubMed 

    Google Scholar 

  • FsFast – Free Surfer wiki. (2011).

  • Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Gratton, C. et al. Removal of high frequency contamination from motion estimates in single-band fMRI saves data without biasing functional connectivity. Neuroimage 217, 116866 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Yu, M. et al. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 39, 4213 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Barch, D. M. et al. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: rationale and description. Dev. Cogn. Neurosci. 32, 55–66 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, R. Schaefer2018 parcellation 400-region 17-network in fslr space. Figshare (2019).

  • Orban, C. Subcortical_regions.png. Figshare (2019).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.