July 8, 2025

Vital Path Care

Together for Your Health

Imaging the eye as a window to brain health: frontier approaches and future directions | Journal of Neuroinflammation

Imaging the eye as a window to brain health: frontier approaches and future directions | Journal of Neuroinflammation
  • Abramoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Rev Biomed Eng. 2010;3:169–208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, Legare F. Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys Rev. 2023;15:43–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA. Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell. 2007;131:378–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alba-Arbalat S, Andorra M, Sanchez-Dalmau B, Camos-Carreras A, Dotti-Boada M, Pulido-Valdeolivas I, Llufriu S, Blanco Y, Sepulveda M, Saiz A, Batet O, Bilbao I, Torre I, Amat-Roldan I, Martinez-Lapiscina EH, Villoslada P. In Vivo molecular changes in the retina of patients with multiple sclerosis. Invest Ophthalmol Vis Sci. 2021;62:11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen L. Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol. 1964;57:13–28.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alshammri R, Alharbi G, Alharbi E, Almubark I. Machine learning approaches to identify Parkinson’s disease using voice signal features. Front Artif Intell. 2023;6:1084001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altay L, Scholz P, Schick T, Felsch M, Hoyng CB, den Hollander AI, Langmann T, Fauser S. Association of hyperreflective foci present in early forms of age-related macular degeneration with known age-related macular degeneration risk polymorphisms. Invest Ophthalmol Vis Sci. 2016;57:4315–20.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Armstrong GW, Lorch AC. A(eye): a review of current applications of artificial intelligence and machine learning in ophthalmology. Int Ophthalmol Clin. 2020;60:57–71.

    Article 
    PubMed 

    Google Scholar 

  • Arrigo A, Perra C, Aragona E, Giusto D, Doglioni C, Pierro L, Giordano Resti A, Bandello F, Battaglia Parodi M. Extrafoveal Muller cells detection in vivo in the human retina: a pilot study based on optical coherence tomography. Exp Eye Res. 2020;199: 108183.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Avila FJ, Gambin A, Artal P, Bueno JM. In vivo two-photon microscopy of the human eye. Sci Rep. 2019;9:10121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beard H, Chidlow G, Neumann D, Nazri N, Douglass M, Trim PJ, Snel MF, Casson RJ, Hemsley KM. Is the eye a window to the brain in Sanfilippo syndrome? Acta Neuropathol Commun. 2020;8:194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, Hamzah H, Ho J, Lee XQ, Hsu W, Lee ML, Musonda L, Chandran M, Chipalo-Mutati G, Muma M, Tan GSW, Sivaprasad S, Menon G, Wong TY, Ting DSW. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. 2019;1:e35–44.

    Article 
    PubMed 

    Google Scholar 

  • Bennett TJ. 2013. History of ophthalmic photography blog. In.: Ophthalmic photographers’ society eye imaging experts

  • Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110:2641–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci. 2007;27:7028–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blair CJ. ’Geographic atrophy of the retinal pigment epithelium. A manifestation of senile macular degeneration. Arch Ophthalmol. 1975;93:19–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, Vienna Diabetic Retinopathy Research Group. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.

    Article 
    PubMed 

    Google Scholar 

  • Bora A, Balasubramanian S, Babenko B, Virmani S, Venugopalan S, Mitani A, de Oliveira Marinho G, Cuadros J, Ruamviboonsuk P, Corrado GS, Peng L, Webster DR, Varadarajan AV, Hammel N, Liu Y, Bavishi P. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health. 2021;3:e10–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borrelli E, Zuccaro B, Zucchiatti I, Parravano M, Querques L, Costanzo E, Sacconi R, Prascina F, Scarinci F, Bandello F, Querques G. Optical coherence tomography parameters as predictors of treatment response to eplerenone in central serous chorioretinopathy. J Clin Med. 2019;8:1271.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D. Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B. 1993;19:201–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bourdin A, Ortoli M, Karadayi R, Przegralek L, Sennlaub F, Bodaghi B, Guillonneau X, Carpentier A, Touhami S. Efficacy and safety of low-intensity pulsed ultrasound-induced blood-retinal barrier opening in mice. Pharmaceutics. 2023;15:1896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brawek B, Olmedillas Del Moral M, Garaschuk O. In Vivo visualization of microglia using tomato lectin. Methods Mol Biol. 2019;2034:165–75.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brody J, Waller S, Wagoner M. Corneal topography: history, technique, and clinical uses. Int Ophthalmol Clin. 1994;34:197–207.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem. 2011;83:3224–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Canonica J, Foxton R, Garrido MG, Lin CM, Uhles S, Shanmugam S, Antonetti DA, Abcouwer SF, Westenskow PD. Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion. Front Cell Neurosci. 2023;17:1192464.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavallerano J, Lawrence MG, Zimmer-Galler I, Bauman W, Bursell S, Gardner WK, Horton M, Hildebrand L, Federman J, Carnahan L, Kuzmak P, Peters JM, Darkins A, Ahmed J, Aiello LM, Aiello LP, Buck G, Cheng YL, Cunningham D, Goodall E, Hope N, Huang E, Hubbard L, Janczewski M, Lewis JW, Matsuzaki H, McVeigh FL, Motzno J, Parker-Taillon D, Read R, Soliz P, Szirth B, Vigersky RA, Ward T. Telehealth practice recommendations for diabetic retinopathy. Telemed J E Health. 2004;10:469–82.

    Article 
    PubMed 

    Google Scholar 

  • Cen LP, Ji J, Lin JW, Ju ST, Lin HJ, Li TP, Wang Y, Yang JF, Liu YF, Tan S, Tan L, Li D, Wang Y, Zheng D, Xiong Y, Wu H, Jiang J, Wu Z, Huang D, Shi T, Chen B, Yang J, Zhang X, Luo L, Huang C, Zhang G, Huang Y, Ng TK, Chen H, Chen W, Pang CP, Zhang M. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun. 2021;12:4828.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan KC, Fan SJ, Zhou IY, Wu EX. In vivo chromium-enhanced MRI of the retina. Magn Reson Med. 2012;68:1202–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006;47:3595–602.

    Article 
    PubMed 

    Google Scholar 

  • Chen J, Wang Q, Zhang H, Yang X, Wang J, Berkowitz BA, Wickline SA, Song SK. In vivo quantification of T1, T2, and apparent diffusion coefficient in the mouse retina at 11.74T. Magn Reson Med. 2008;59:731–8.

    Article 
    PubMed 

    Google Scholar 

  • Chen L, Yang P, Kijlstra A. Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm. 2002;10:27–39.

    Article 
    PubMed 

    Google Scholar 

  • Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015;98:713–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7:654–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng H, Nair G, Walker TA, Kim MK, Pardue MT, Thule PM, Olson DE, Duong TQ. Structural and functional MRI reveals multiple retinal layers. Proc Natl Acad Sci USA. 2006;103:17525–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheung N, Liew G, Lindley RI, Liu EY, Wang JJ, Hand P, Baker M, Mitchell P, Wong TY, Retina Multi-Center, and Group Stroke Study Collaborative. Retinal fractals and acute lacunar stroke. Ann Neurol. 2010;68:107–11.

    Article 
    PubMed 

    Google Scholar 

  • Christinaki E, Kulenovic H, Hadoux X, Baldassini N, Van Eijgen J, De Groef L, Stalmans I, van Wijngaarden P. Retinal imaging biomarkers of neurodegenerative diseases. Clin Exp Optom. 2022;105:194–204.

    Article 
    PubMed 

    Google Scholar 

  • Consejo A, Melcer T, Rozema JJ. Introduction to machine learning for ophthalmologists. Semin Ophthalmol. 2019;34:19–41.

    Article 
    PubMed 

    Google Scholar 

  • Crespo-Garcia S, Reichhart N, Hernandez-Matas C, Zabulis X, Kociok N, Brockmann C, Joussen AM, Strauss O. In vivo analysis of the time and spatial activation pattern of microglia in the retina following laser-induced choroidal neovascularization. Exp Eye Res. 2015;139:13–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Csaszar E, Lenart N, Cserep C, Kornyei Z, Fekete R, Posfai B, Balazsfi D, Hangya B, Schwarcz AD, Szabadits E, Szollosi D, Szigeti K, Mathe D, West BL, Sviatko K, Bras AR, Mariani JC, Kliewer A, Lenkei Z, Hricisak L, Benyo Z, Baranyi M, Sperlagh B, Menyhart A, Farkas E, Denes A. Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. J Exp Med. 2022;219:3.

    Article 

    Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci. 2001;42:1855–66.

    CAS 
    PubMed 

    Google Scholar 

  • Dos Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, Garhofer G, Werkmeister RM. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express. 2019;10:622–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duck FA. Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol. 2007;93:176–91.

    Article 
    PubMed 

    Google Scholar 

  • Duong TQ. Magnetic resonance imaging of the retina: a brief historical and future perspective. Saudi J Ophthalmol. 2011;25:137–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duong TQ, Muir ER. Magnetic resonance imaging of the retina. Jpn J Ophthalmol. 2009;53:352–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edelman JL, Miller SS. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1991;32:3033–40.

    CAS 
    PubMed 

    Google Scholar 

  • Emma Beede, Elizabeth Baylor, Fred Hersch, Anna Iurchenko, Lauren Wilcox, Paisan Ruamviboonsuk, Laura M. Vardoulakis. 2020. “A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy”. In CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12. Honolulu HI USA: Association for Computing Machinery.

  • Feng J, Chen X, Sun X, Wang F, Sun X. Expression of endoplasmic reticulum stress markers GRP78 and CHOP induced by oxidative stress in blue light-mediated damage of A2E-containing retinal pigment epithelium cells. Ophthalmic Res. 2014;52:224–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. 2021;2021:6096017.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fragiotta S, Rossi T, Cutini A, Grenga PL, Vingolo EM. Predictive factors for development of neovascular age-related macular degeneration: a spectral-domain optical coherence Tomography Study. Retina. 2018;38:245–52.

    Article 
    PubMed 

    Google Scholar 

  • Framme C, Wolf S, Wolf-Schnurrbusch U. Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51:5965–9.

    Article 
    PubMed 

    Google Scholar 

  • Frampton GK, Kalita N, Payne L, Colquitt JL, Loveman E, Downes SM, Lotery AJ. Fundus autofluorescence imaging: systematic review of test accuracy for the diagnosis and monitoring of retinal conditions. Eye. 2017;31:995–1007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis AW, Wanek J, Lim JI, Shahidi M. Enface thickness mapping and reflectance imaging of retinal layers in diabetic retinopathy. PLoS ONE. 2015;10: e0145628.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freund I, Deutsch M. Second-harmonic microscopy of biological tissue. Opt Lett. 1986;11:94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujimoto, J., and E. Swanson. 2016. ‘The Development, Commercialization, and Impact of Optical Coherence Tomography’, Invest Ophthalmol Vis Sci, 57: OCT1-OCT13.

  • Galetta KM, Calabresi PA, Frohman EM, Balcer LJ. Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics. 2011;8:117–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallemore RP, Hughes BA, Miller SS. Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retinal Eye Res. 1997;16:509–66.

    Article 
    CAS 

    Google Scholar 

  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007;102:1095–104.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gass JD. Drusen and disciform macular detachment and degeneration. Trans Am Ophthalmol Soc. 1972;70:409–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gass JD, Sever RJ, Sparks D, Goren J. A combined technique of fluorescein funduscopy and angiography of the eye. Arch Ophthalmol. 1967;78:455–61.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gerloff O. Uber die photographie des Augenhintergrundes. Klin Monatsblätter Augenheilkunde. 1891;5:397–403.

    Google Scholar 

  • Ghods A, Cook DJ. A survey of deep network techniques all classifiers can adopt. Data Min Knowl Discov. 2021;35:46–87.

    Article 
    PubMed 

    Google Scholar 

  • Gosnell ME, Staikopoulos V, Anwer AG, Mahbub SB, Hutchinson MR, Mustafa S, Goldys EM. Autofluorescent imprint of chronic constriction nerve injury identified by deep learning. Neurobiol Dis. 2021;160: 105528.

    Article 
    PubMed 

    Google Scholar 

  • Grewal DS, O’Sullivan ML, Kron M, Jaffe GJ. Association of disorganization of retinal inner layers with visual acuity in eyes with uveitic cystoid macular edema. Am J Ophthalmol. 2017;177:116–25.

    Article 
    PubMed 

    Google Scholar 

  • Gullstrand A. Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft. 1910;6:42.

    Google Scholar 

  • Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.

    Article 
    PubMed 

    Google Scholar 

  • Gupta AK, Meng R, Modi YS, Srinivasan VJ. Imaging human macular pigments with visible light optical coherence tomography and superluminescent diodes. Opt Lett. 2023;48:4737–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadoux X, Hui F, Lim JKH, Masters CL, Pebay A, Chevalier S, Ha J, Loi S, Fowler CJ, Rowe C, Villemagne VL, Taylor EN, Fluke C, Soucy JP, Lesage F, Sylvestre JP, Rosa-Neto P, Mathotaarachchi S, Gauthier S, Nasreddine ZS, Arbour JD, Rheaume MA, Beaulieu S, Dirani M, Nguyen CTO, Bui BV, Williamson R, Crowston JG, van Wijngaarden P. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun. 2019;10:4227.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hikage F, Lennikov A, Mukwaya A, Lachota M, Ida Y, Utheim TP, Chen DF, Huang H, Ohguro H. NF-kappaB activation in retinal microglia is involved in the inflammatory and neovascularization signaling in laser-induced choroidal neovascularization in mice. Exp Cell Res. 2021;403: 112581.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hildred RB. A brief history on the development of ophthalmic retinal photography into digital imaging. J Audiov Media Med. 1990;13:101–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hogg RE, Silva R, Staurenghi G, Murphy G, Santos AR, Rosina C, Chakravarthy U. Clinical characteristics of reticular pseudodrusen in the fellow eye of patients with unilateral neovascular age-related macular degeneration. Ophthalmology. 2014;121:1748–55.

    Article 
    PubMed 

    Google Scholar 

  • Horii T, Murakami T, Nishijima K, Akagi T, Uji A, Arakawa N, Muraoka Y, Yoshimura N. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology. 2012;119:1047–55.

    Article 
    PubMed 

    Google Scholar 

  • Hospital, The Royal Victorian Eye and Ear. 2020. Retinal angiogram,. Accessed 03 May 2023.

  • Huang CH, Yang CH, Lai YJ, Hsiao CK, Hou YC, Yang CM, Chen TC. Hyperreflective foci as important prognostic indicators of progression of retinitis pigmentosa. Retina. 2022;42:388–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang DK, Hsu CC, Chang KJ, Chao D, Sun CH, Jheng YC, Yarmishyn AA, Wu JC, Tsai CY, Wang ML, Peng CH, Chien KH, Kao CL, Lin TC, Woung LC, Chen SJ, Chiou SH. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics. 2019;9:232–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ignatova I, Frolov R, Nymark S. The retinal pigment epithelium displays electrical excitability and lateral signal spreading. BMC Biol. 2023;21:84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR, Wong WT. 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 2015;5:9144.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivanisevic M, Stanic R, Ivanisevic P, Vukovic A. Albrecht von Graefe (1828–1870) and his contributions to the development of ophthalmology. Int Ophthalmol. 2020;40:1029–33.

    Article 
    PubMed 

    Google Scholar 

  • Jackman WT, Webster JD. On photographing the retina of the living human eye. Philadel Photogr. 1886;23:340–1.

    Google Scholar 

  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Janez-Garcia L, Bachtoula O, Salobrar-Garcia E, de Hoz R, Ramirez AI, Gil P, Ramirez JM, Janez-Escalada L. Roughness of retinal layers in Alzheimer’s disease. Sci Rep. 2021;11:11804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansen LG, Schultz T, Holz FG, Finger RP, Wintergerst MWM. Smartphone-based fundus imaging: applications and adapters. Ophthalmologe. 2022;119:112–26.

    Article 
    PubMed 

    Google Scholar 

  • Kalra G, Pichi F, Kumar Menia N, Shroff D, Phasukkijwatana N, Aggarwal K, Agarwal A. Recent advances in wide field and ultrawide field optical coherence tomography angiography in retinochoroidal pathologies. Expert Rev Med Devices. 2021;18:375–86.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27:622–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res. 2008;5:71–81.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kelly D, Coen RF, Akuffo KO, Beatty S, Dennison J, Moran R, Stack J, Howard AN, Mulcahy R, Nolan JM. Cognitive function and its relationship with macular pigment optical density and serum concentrations of its constituent carotenoids. J Alzheimers Dis. 2015;48:261–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim SY, Yang HJ, Chang YS, Kim JW, Brooks M, Chew EY, Wong WT, Fariss RN, Rachel RA, Cogliati T, Qian H, Swaroop A. Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Invest Ophthalmol Vis Sci. 2014;55:6031–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11: 564077.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kinyoun JL, Martin DC, Fujimoto WY, Leonetti DL. Ophthalmoscopy versus fundus photographs for detecting and grading diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992;33:1888–93.

    CAS 
    PubMed 

    Google Scholar 

  • Kobat SG, Turgut B. Importance of Muller Cells. Beyoglu Eye J. 2020;5:59–63.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohlfaerber T, Pieper M, Munter M, Holzhausen C, Ahrens M, Idel C, Bruchhage KL, Leichtle A, Konig P, Huttmann G, Schulz-Hildebrandt H. Dynamic microscopic optical coherence tomography to visualize the morphological and functional micro-anatomy of the airways. Biomed Opt Express. 2022;13:3211–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolb H. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos Trans R Soc Lond B Biol Sci. 1970;258:261–83.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54(Suppl 1):S204–17.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A, Fuchs DT, Ashfaq A, Frautschy S, Cole GM, Miller CA, Hinton DR, Verdooner SR, Black KL, Koronyo-Hamaoui M. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2:8.

    Article 

    Google Scholar 

  • Krishnan CVRKS. A new type of secondary radiation. Nature. 1928;121:501–2.

    Article 

    Google Scholar 

  • Kulkarni S, Deshpande M. Recent advances in retinal imaging and diagnostics. Commun Eye Health. 2019;32:S9–10.

    Google Scholar 

  • Lakkaraju A, Finnemann SC, Rodriguez-Boulan E. The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A. 2007;104:11026–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei L, Tzekov R, Tang S, Kaushal S. Accumulation and autofluorescence of phagocytized rod outer segment material in macrophages and microglial cells. Mol Vis. 2012;18:103–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leinenga G, Bodea LG, Schroder J, Sun G, Zhou Y, Song J, Grubman A, Polo JM, Gotz J. Transcriptional signature in microglia isolated from an Alzheimer’s disease mouse model treated with scanning ultrasound. Bioeng Transl Med. 2023;8: e10329.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lemire S, Thoma OM, Kreiss L, Volkl S, Friedrich O, Neurath MF, Schurmann S, Waldner MJ. Natural NADH and FAD autofluorescence as label-free biomarkers for discriminating subtypes and functional states of immune cells. Int J Mol Sci. 2022;23:2338.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li J, Yan P, Li Y, Han M, Zeng Q, Li J, Yu Z, Zhang D, Chen X. Harnessing the power of Raman spectroscopic imaging for ophthalmology. Front Chem. 2023;11:1211121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li LJ, Ikram MK, Wong TY. Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease. J Physiol. 2016;594:2175–203.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li Y, Teng X, Yang C, Wang Y, Wang L, Dai Y, Sun H, Li J. Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew Chem Int Ed Engl. 2021;60:5083–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li Z, Jiang J, Chen K, Chen Q, Zheng Q, Liu X, Weng H, Wu S, Chen W. Preventing corneal blindness caused by keratitis using artificial intelligence. Nat Commun. 2021;12:3738.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim H, Danias J. Effect of axonal micro-tubules on the morphology of retinal nerve fibers studied by second-harmonic generation. J Biomed Opt. 2012;17: 110502.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim JK, Li QX, He Z, Vingrys AJ, Wong VH, Currier N, Mullen J, Bui BV, Nguyen CT. The eye as a biomarker for Alzheimer’s disease. Front Neurosci. 2016;10:536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin TY, Motamedi S, Asseyer S, Chien C, Saidha S, Calabresi PA, Fitzgerald KC, Samadzadeh S, Villoslada P, Llufriu S, Green AJ, Preiningerova JL, Petzold A, Leocani L, Garcia-Martin E, Oreja-Guevara C, Outteryck O, Vermersch P, Balcer LJ, Kenney R, Albrecht P, Aktas O, Costello F, Frederiksen J, Uccelli A, Cellerino M, Frohman EM, Frohman TC, Bellmann-Strobl J, Schmitz-Hubsch T, Ruprecht K, Brandt AU, Zimmermann HG, Paul F. Individual prognostication of disease activity and disability worsening in multiple sclerosis with retinal layer thickness z scores. Neurol Neuroimmunol Neuroinflamm. 2024;11: e200269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu J, Chen Y, Wang G, Lv Q, Yang Y, Wang J, Zhang P, Liu J, Xie Y, Zhang L, Xie M. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials. 2018;162:200–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Loffler KU, Edward DP, Tso MO. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci. 1995;36:24–31.

    CAS 
    PubMed 

    Google Scholar 

  • Ma D, Deng W, Khera Z, Sajitha TA, Wang X, Wollstein G, Schuman JS, Lee S, Shi H, Ju MJ, Matsubara J, Beg MF, Sarunic M, Sappington RM, Chan KC. Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography. Acta Neuropathol Commun. 2024;12:19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: connecting basic science with clinical applications. Front Ophthalmol. 2023;2:23.

    Article 

    Google Scholar 

  • MacGillivray TJ, Cameron JR, Zhang Q, El-Medany A, Mulholland C, Sheng Z, Dhillon B, Doubal FN, Foster PJ, Trucco E, Sudlow C, U. K. Biobank Eye, and Consortium Vision. Suitability of UK biobank retinal images for automatic analysis of morphometric properties of the vasculature. PLoS ONE. 2015;10:e0127914.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maeda A, Golczak M, Chen Y, Okano K, Kohno H, Shiose S, Ishikawa K, Harte W, Palczewska G, Maeda T, Palczewski K. Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat Chem Biol. 2011;8:170–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makabe K, Sugita S, Mandai M, Futatsugi Y, Takahashi M. Microglia dynamics in retinitis pigmentosa model: formation of fundus whitening and autofluorescence as an indicator of activity of retinal degeneration. Sci Rep. 2020;10:14700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malhotra A, Minja FJ, Crum A, Burrowes D. Ocular anatomy and cross-sectional imaging of the eye. Semin Ultrasound CT MR. 2011;32:2–13.

    Article 
    PubMed 

    Google Scholar 

  • Vilela MAP, Valença FM, Barreto PKM, Amaral CEV, Pellanda LC. Agreement between retinal images obtained via smartphones and images obtained with retinal cameras or fundoscopic exams—systematic review and meta-analysis. Clinical opthalmology. 2018;12:2581–9.

    Article 

    Google Scholar 

  • Marro M, Taubes A, Abernathy A, Balint S, Moreno B, Sanchez-Dalmau B, Martinez-Lapiscina EH, Amat-Roldan I, Petrov D, Villoslada P. Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis. J Biophotonics. 2014;7:724–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid Med Cell Longev. 2017;2017:9208489.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Sharrett AR, Klein BE, Wang JJ, Chambless LE, Wong TY. Risk prediction of coronary heart disease based on retinal vascular caliber (from the atherosclerosis risk in communities [ARIC] study). Am J Cardiol. 2008;102:58–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meah A, Boodram V, Bucinca-Cupallari F, Lim H. Axonal architecture of the mouse inner retina revealed by second harmonic generation. PNAS Nexus. 2022;1:pgac160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torresin T, Lupidi M, Frizziero L, Toto L, Covello G, Midena G, Pilotto E, Figus M, Mariotti C, Midena E. OCT hyperreflective retinal foci as sign of microglial activation in diabetic retinopathy: an AI automatic quantification approach. Investig Ophthalmol Vis Sci. 2023;64:1288.

    Google Scholar 

  • Miller EB, Karlen SJ, Ronning KE, Burns ME. Tracking distinct microglia subpopulations with photoconvertible Dendra2 in vivo. J Neuroinflammation. 2021;18:235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller EB, Zhang P, Ching K, Pugh EN Jr, Burns ME. In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury. Proc Natl Acad Sci USA. 2019;116:16603–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • More SS, Beach JM, McClelland C, Mokhtarzadeh A, Vince R. In Vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer’s disease. ACS Chem Neurosci. 2019;10:4492–501.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagaraju RM, Gurushankar G, Bhimarao, and B. Kadakola. Efficacy of high frequency ultrasound in localization and characterization of orbital lesions. J Clin Diagn Res. 2015;9:TC01-6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naor O, Hertzberg Y, Zemel E, Kimmel E, Shoham S. Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis. J Neural Eng. 2012;9: 026006.

    Article 
    PubMed 

    Google Scholar 

  • Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide “insight” into cortical pharmacology and disease. Pharmacol Ther. 2017;175:151–77.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ning A, Cui J, To E, Ashe KH, Matsubara J. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci. 2008;49:5136–43.

    Article 
    PubMed 

    Google Scholar 

  • Niwas SI, Lin W, Bai X, Kwoh CK, Jay Kuo CC, Sng CC, Aquino MC, Chew PT. Automated anterior segment OCT image analysis for angle closure glaucoma mechanisms classification. Comput Methods Programs Biomed. 2016;130:65–75.

    Article 
    PubMed 

    Google Scholar 

  • Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, Kalnitsky J, Msallam RA, Silvin A, Kay JN, Bowes Rickman C, Arshavsky VY, Ginhoux F, Merad M, Saban DR. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity. 2019;50(723–37): e7.

    Google Scholar 

  • Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, Ota M, Yoshimura N. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32:77–85.

    Article 
    PubMed 

    Google Scholar 

  • Oishi A, Miyata M, Numa S, Otsuka Y, Oishi M, Tsujikawa A. Wide-field fundus autofluorescence imaging in patients with hereditary retinal degeneration: a literature review. Int J Retina Vitreous. 2019;5:23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, Teoh S, Lim TH, Agrawal R. Fundus photography in the 21st century–a review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health. 2016;22:198–208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parida H, Kannan NB, Rathinam SR. Imaging of Muller cell sheen dystrophy. Indian J Ophthalmol. 2020;68:533–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park CY, Lee JK, Chuck RS. Second harmonic generation imaging analysis of collagen arrangement in human cornea. Invest Ophthalmol Vis Sci. 2015;56:5622–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patil SA, Joseph B, Tagliani P, Sastre-Garriga J, Montalban X, Vidal-Jordana A, Galetta SL, Balcer LJ, Kenney RC. Longitudinal stability of inter-eye differences in optical coherence tomography measures for identifying unilateral optic nerve lesions in multiple sclerosis. J Neurol Sci. 2023;449: 120669.

    Article 
    PubMed 

    Google Scholar 

  • Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Fleckenstein B, Jung G, Hamprecht B. Glycogen phosphorylase isozyme pattern in mammalian retinal Muller (glial) cells and in astrocytes of retina and optic nerve. Glia. 2005;49:84–95.

    Article 
    PubMed 

    Google Scholar 

  • Phipps JA, Vessey KA, Brandli A, Nag N, Tran MX, Jobling AI, Fletcher EL. The role of angiotensin II/AT1 receptor signaling in regulating retinal microglial activation. Invest Ophthalmol Vis Sci. 2018;59:487–98.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quiriconi P, Hristov V, Aburaya M, Greferath U, Jobling AI, Fletcher EL. The role of microglia in the development of diabetic retinopathy. Metabol Health Dis. 2024;2:14.

    Google Scholar 

  • Pichi F, Neri P, Moreno-Rodriguez L, Carreno E. Dancing in the eye: dynamic optical coherence tomography to distinguish different retinal microglia populations. Int Ophthalmol. 2024;44:165.

    Article 
    PubMed 

    Google Scholar 

  • Pilotto E, Torresin T, Bacelle ML, De Moja G, Ferrara AM, Zovato S, Midena G, Midena E. Hyper-reflective retinal foci as possible in vivo imaging biomarker of microglia activation in von Hippel-Lindau disease. PLoS ONE. 2022;17: e0272318.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pollreisz A, Kunze LE, Brunner E, Drexler W, Schmidt-Erfurth U, Pircher M. Quantitative assessment of retinal microglia by volumetric adaptive optics OCT in eyes with diabetic retinopathy. Investig Ophthalmol Visual Sci. 2024;65:2178.

    Google Scholar 

  • Polyakova Z, Iwase M, Hashimoto R, Yoshida M. The effect of ketamine on eye movement characteristics during free-viewing of natural images in common marmosets. Front Neurosci. 2022;16:1012300.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puthenparampil M, Torresin T, Franciotta S, Marin A, De Napoli F, Mauceri VA, Miante S, Pilotto E, Midena E, Gallo P. Hyper-reflecting foci in multiple sclerosis retina associate with macrophage/microglia-derived cytokines in cerebrospinal fluid. Front Immunol. 2022;13: 852183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajkomar A, Dean J, Kohane I. Machine learning in medicine reply. N Engl J Med. 2019;380:2589–90.

    Article 
    PubMed 

    Google Scholar 

  • Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration. Front Immunol. 2019;10:1975.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rashidi HH, Tran NK, Betts EV, Howell LP, Green R. Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad Pathol. 2019;6:2374289519873088.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez IR, Clark ME, Lee JW, Curcio CA. 7-ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen. Exp Eye Res. 2014;128:151–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rovati L, Fankhauser F, Docchio F, Van Best J. Diabetic retinopathy assessed by dynamic light scattering and corneal autofluorescence. J Biomed Opt. 1998;3:357–63.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T. “Blue light-induced reactivity of retinal age pigment In vitro generation of oxygen-reactive species.” J Biol Chem. 1995;270:18825–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rui Y, Zhang M, Lee DMW, Snyder VC, Raghuraman R, Gofas-Salas E, Mece P, Yadav S, Tiruveedhula P, Grieve K, Sahel JA, Errera MH, Rossi EA. Label-free imaging of inflammation at the level of single cells in the living human eye. Ophthalmol Sci. 2024;4: 100475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salas M, Augustin M, Ginner L, Kumar A, Baumann B, Leitgeb R, Drexler W, Prager S, Hafner J, Schmidt-Erfurth U, Pircher M. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics. Biomed Opt Express. 2017;8:207–22.

    Article 
    PubMed 

    Google Scholar 

  • Sasamoto Y, Gomi F, Sawa M, Sakaguchi H, Tsujikawa M, Nishida K. Effect of cataract in evaluation of macular pigment optical density by autofluorescence spectrometry. Invest Ophthalmol Vis Sci. 2011;52:927–32.

    Article 
    PubMed 

    Google Scholar 

  • Say EA, Shah SU, Ferenczy S, Shields CL. Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol. 2011;2011: 385058.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovic H. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1–29.

    Article 
    PubMed 

    Google Scholar 

  • Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol. 2004;6:1054–61.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seyyed-Kalantari L, Zhang H, McDermott MBA, Chen IY, Ghassemi M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med. 2021;27:2176–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z. Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: a systematic review. Surv Ophthalmol. 2023;68:42–53.

    Article 
    PubMed 

    Google Scholar 

  • Shen Q, Cheng H, Pardue MT, Chang TF, Nair G, Vo VT, Shonat RD, Duong TQ. Magnetic resonance imaging of tissue and vascular layers in the cat retina. J Magn Reson Imaging. 2006;23:465–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111:1452–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sivak JM. The aging eye: common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest Ophthalmol Vis Sci. 2013;54:871–80.

    Article 
    PubMed 

    Google Scholar 

  • Smith RT, Chan JK, Busuoic M, Sivagnanavel V, Bird AC, Chong NV. Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47:5495–504.

    Article 
    PubMed 

    Google Scholar 

  • Snyder PJ, Alber J, Alt C, Bain LJ, Bouma BE, Bouwman FH, DeBuc DC, Campbell MCW, Carrillo MC, Chew EY, Cordeiro MF, Duenas MR, Fernandez BM, Koronyo-Hamaoui M, La Morgia C, Carare RO, Sadda SR, van Wijngaarden P, Snyder HM. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers Dement. 2021;17:103–11.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sominsky L, De Luca S, Spencer SJ. Microglia: Key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol. 2018;94:56–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song PI, Matsui JI, Dowling JE. Morphological types and connectivity of horizontal cells found in the adult zebrafish (Danio rerio) retina. J Comp Neurol. 2008;506:328–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparrow JM, Bron AJ, Brown NA, Neil HA. Autofluorescence of the crystalline lens in early and late onset diabetes. Br J Ophthalmol. 1992;76:25–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparrow JR, Cai B. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci. 2001;42:1356–62.

    CAS 
    PubMed 

    Google Scholar 

  • Sparrow JR, Cai B, Jang YP, Zhou J, Nakanishi K. A2E, a fluorophore of RPE lipofuscin, can destabilize membrane. Adv Exp Med Biol. 2006;572:63–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stiebing C, Jahn IJ, Schmitt M, Keijzer N, Kleemann R, Kiliaan AJ, Drexler W, Leitgeb RA, Popp J. Biochemical characterization of mouse retina of an Alzheimer’s disease model by raman spectroscopy. ACS Chem Neurosci. 2020;11:3301–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Straub J, Sprowl RA. Technical and optical aspects of smartphone-based fundus photography: possibilities and limitations in practice. Ophthalmologe. 2022;119:127–35.

    Article 
    PubMed 

    Google Scholar 

  • Tan HY, Sun Y, Lo W, Teng SW, Wu RJ, Jee SH, Lin WC, Hsiao CH, Lin HC, Chen YF, Ma DH, Huang SC, Lin SJ, Dong CY. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis. J Biomed Opt. 2007;12: 024013.

    Article 
    PubMed 

    Google Scholar 

  • Thal DR, Ghebremedhin E, Haass C, Schultz C. UV light-induced autofluorescence of full-length Abeta-protein deposits in the human brain. Clin Neuropathol. 2002;21:35–40.

    CAS 
    PubMed 

    Google Scholar 

  • Thompson DA, Gal A. Genetic defects in vitamin A metabolism of the retinal pigment epithelium. Dev Ophthalmol. 2003;37:141–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318:2211–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina. 2013;33:490–7.

    Article 
    PubMed 

    Google Scholar 

  • Van Schaik HJ, Alkemade C, Swart W, Van Best JA. Autofluorescence of the diabetic and healthy human cornea in vivo at different excitation wavelengths. Exp Eye Res. 1999;68:1–8.

    Article 
    PubMed 

    Google Scholar 

  • Van Trigt, AC. 1853. ‘Trajecti ad Rhenum’, Dissertatio ophthalmologica inauguralis de speculo oculi.

  • van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007;26:57–77.

    Article 
    PubMed 

    Google Scholar 

  • Vinay A. Shah, Robert A Hyde, Alexander Engelmann, Jennifer I Lim, Jay Chhablani, Peter A.Karth, Nikhila Khandwala, Cassie Huang. 2023. ‘Peripheral Retinal Degenerations’, American Academy of Ophthalmology. Accessed 3 Dec.

  • von Helmholtz, HLF. 1851. ‘Beschreibung eines Augen-Spiegels’, A Farstnerische Verlagsbuchhandlung.

  • Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, Ferraz D, Korot E, Kelly C, Balaskas K, Denniston AK, Keane PA. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol. 2020;9:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waldstein SM, Vogl WD, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-Erfurth U. Characterization of Drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA Ophthalmol. 2020;138:740–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh AJ, Mueller KP, Tweed K, Jones I, Walsh CM, Piscopo NJ, Niemi NM, Pagliarini DJ, Saha K, Skala MC. Classification of T-cell activation via autofluorescence lifetime imaging. Nat Biomed Eng. 2021;5:77–88.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang NK, Lai CC, Liu CH, Yeh LK, Chou CL, Kong J, Nagasaki T, Tsang SH, Chien CL. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome. Dis Model Mech. 2013;6:1113–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS, Gan WB, Roger JE, Wong WT. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36:2827–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang YL, Yang JY, Yang JY, Zhao XY, Chen YX, Yu WH. Progress of artificial intelligence in diabetic retinopathy screening. Diabetes Metab Res Rev. 2021;37: e3414.

    Article 
    PubMed 

    Google Scholar 

  • Wang ZJ, Walsh AJ, Skala MC, Gitter A. Classifying T cell activity in autofluorescence intensity images with convolutional neural networks. J Biophotonics. 2020;13: e201960050.

    Article 
    PubMed 

    Google Scholar 

  • Nguyen CL, Wayenborgh JP. Hermann von Helmholtz: the ophthalmoscope and some of his other contributions to ophthalmology. Hist Ophthal Intern. 2015;1:165–77.

    Google Scholar 

  • Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Biomed Eng. 1981;28:488–92.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whitmore SS, DeLuca AP, Andorf JL, Cheng JL, Mansoor M, Fortenbach CR, Critser DB, Russell JF, Stone EM, Han IC. Modeling rod and cone photoreceptor cell survival in vivo using optical coherence tomography. Sci Rep. 2023;13:6896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wintergerst MWM, Mishra DK, Hartmann L, Shah P, Konana VK, Sagar P, Berger M, Murali K, Holz FG, Shanmugam MP, Finger RP. Diabetic retinopathy screening using smartphone-based fundus imaging in India. Ophthalmology. 2020;127:1529–38.

    Article 
    PubMed 

    Google Scholar 

  • Wolfing JI, Chung M, Carroll J, Roorda A, Williams DR. High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology. 2006;113(1019): e1.

    Google Scholar 

  • Wong TY, Cheung N, Islam FM, Klein R, Criqui MH, Cotch MF, Carr JJ, Klein BE, Sharrett AR. Relation of retinopathy to coronary artery calcification: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2008;167:51–8.

    Article 
    PubMed 

    Google Scholar 

  • Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, Yip MYT, Qi Lee X, Hsu W, Li Lee M, Tan CS, Tym Wong H, Lamoureux EL, Tan GSW, Wong TY, Finkelstein EA, Ting DSW. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health. 2020;2:e240–9.

    Article 
    PubMed 

    Google Scholar 

  • Yannuzzi LA. The retinal atlas. Elsevier: New York; 2010.

    Google Scholar 

  • Young LH, Kim J, Yakin M, Lin H, Dao DT, Kodati S, Sharma S, Lee AY, Lee CS, Sen HN. Automated detection of vascular leakage in fluorescein angiography—a proof of concept. Transl Vis Sci Technol. 2022;11:19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y, Shi Z, Shen Y. Eye damage due to cosmetic ultrasound treatment: a case report. BMC Ophthalmol. 2018;18:1.

    Article 

    Google Scholar 

  • Yuksel S, Aredo B, Zegeye Y, Zhao CX, Tang M, Li X, Hulleman JD, Gautron L, Ludwig S, Moresco EMY, Butovich IA, Beutler BA, Ufret-Vincenty RL. Forward genetic screening using fundus spot scale identifies an essential role for Lipe in murine retinal homeostasis. Commun Biol. 2023;6:533.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitreous. 2016;2:12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126:227–32.

    Article 
    PubMed 

    Google Scholar 

  • Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, Shi R, Tu X, Jin K, Wang Y, Zhang Z, Yang GY. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10:74–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Q, Rezaei KA, Saraf SS, Chu Z, Wang F, Wang RK. Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant Imaging Med Surg. 2018;8:743–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Harrison JM, Nateras OS, Chalfin S, Duong TQ. Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI. Doc Ophthalmol. 2013;126:187–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Nateras OS, Peng Q, Kuranov RV, Harrison JM, Milner TE, Duong TQ. Lamina-specific anatomic magnetic resonance imaging of the human retina. Invest Ophthalmol Vis Sci. 2011;52:7232–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Nateras OS, Peng Q, Rosende CA, Duong TQ. Blood flow MRI of the human retina/choroid during rest and isometric exercise. Invest Ophthalmol Vis Sci. 2012;53:4299–305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao N, Hao XN, Huang JM, Song ZM, Tao Y. Crosstalk between microglia and muller glia in the age-related macular degeneration: role and therapeutic value of neuroinflammation. Aging Dis. 2024;15:1132–54.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao Y, MacCormick IJ, Parry DG, Leach S, Beare NA, Harding SP, Zheng Y. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy. Sci Rep. 2015;5:10425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao Y, Zhao J, Gu Y, Chen B, Guo J, Xie J, Yan Q, Ma Y, Wu Y, Zhang J, Lu Q, Liu J. Outer Retinal layer thickness changes in white matter hyperintensity and Parkinson’s disease. Front Neurosci. 2021;15: 741651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou R, Horai R, Silver PB, Mattapallil MJ, Zarate-Blades CR, Chong WP, Chen J, Rigden RC, Villasmil R, Caspi RR. The living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition. J Immunol. 2012;188:1742–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.