Imaging the eye as a window to brain health: frontier approaches and future directions | Journal of Neuroinflammation

Abramoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Rev Biomed Eng. 2010;3:169–208.
Google Scholar
Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, Legare F. Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys Rev. 2023;15:43–70.
Google Scholar
Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA. Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell. 2007;131:378–90.
Google Scholar
Alba-Arbalat S, Andorra M, Sanchez-Dalmau B, Camos-Carreras A, Dotti-Boada M, Pulido-Valdeolivas I, Llufriu S, Blanco Y, Sepulveda M, Saiz A, Batet O, Bilbao I, Torre I, Amat-Roldan I, Martinez-Lapiscina EH, Villoslada P. In Vivo molecular changes in the retina of patients with multiple sclerosis. Invest Ophthalmol Vis Sci. 2021;62:11.
Google Scholar
Allen L. Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol. 1964;57:13–28.
Google Scholar
Alshammri R, Alharbi G, Alharbi E, Almubark I. Machine learning approaches to identify Parkinson’s disease using voice signal features. Front Artif Intell. 2023;6:1084001.
Google Scholar
Altay L, Scholz P, Schick T, Felsch M, Hoyng CB, den Hollander AI, Langmann T, Fauser S. Association of hyperreflective foci present in early forms of age-related macular degeneration with known age-related macular degeneration risk polymorphisms. Invest Ophthalmol Vis Sci. 2016;57:4315–20.
Google Scholar
Armstrong GW, Lorch AC. A(eye): a review of current applications of artificial intelligence and machine learning in ophthalmology. Int Ophthalmol Clin. 2020;60:57–71.
Google Scholar
Arrigo A, Perra C, Aragona E, Giusto D, Doglioni C, Pierro L, Giordano Resti A, Bandello F, Battaglia Parodi M. Extrafoveal Muller cells detection in vivo in the human retina: a pilot study based on optical coherence tomography. Exp Eye Res. 2020;199: 108183.
Google Scholar
Avila FJ, Gambin A, Artal P, Bueno JM. In vivo two-photon microscopy of the human eye. Sci Rep. 2019;9:10121.
Google Scholar
Beard H, Chidlow G, Neumann D, Nazri N, Douglass M, Trim PJ, Snel MF, Casson RJ, Hemsley KM. Is the eye a window to the brain in Sanfilippo syndrome? Acta Neuropathol Commun. 2020;8:194.
Google Scholar
Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, Hamzah H, Ho J, Lee XQ, Hsu W, Lee ML, Musonda L, Chandran M, Chipalo-Mutati G, Muma M, Tan GSW, Sivaprasad S, Menon G, Wong TY, Ting DSW. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. 2019;1:e35–44.
Google Scholar
Bennett TJ. 2013. History of ophthalmic photography blog. In.: Ophthalmic photographers’ society eye imaging experts
Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110:2641–84.
Google Scholar
Bernardos RL, Barthel LK, Meyers JR, Raymond PA. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci. 2007;27:7028–40.
Google Scholar
Blair CJ. ’Geographic atrophy of the retinal pigment epithelium. A manifestation of senile macular degeneration. Arch Ophthalmol. 1975;93:19–25.
Google Scholar
Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, Vienna Diabetic Retinopathy Research Group. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.
Google Scholar
Bora A, Balasubramanian S, Babenko B, Virmani S, Venugopalan S, Mitani A, de Oliveira Marinho G, Cuadros J, Ruamviboonsuk P, Corrado GS, Peng L, Webster DR, Varadarajan AV, Hammel N, Liu Y, Bavishi P. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health. 2021;3:e10–9.
Google Scholar
Borrelli E, Zuccaro B, Zucchiatti I, Parravano M, Querques L, Costanzo E, Sacconi R, Prascina F, Scarinci F, Bandello F, Querques G. Optical coherence tomography parameters as predictors of treatment response to eplerenone in central serous chorioretinopathy. J Clin Med. 2019;8:1271.
Google Scholar
Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D. Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B. 1993;19:201–4.
Google Scholar
Bourdin A, Ortoli M, Karadayi R, Przegralek L, Sennlaub F, Bodaghi B, Guillonneau X, Carpentier A, Touhami S. Efficacy and safety of low-intensity pulsed ultrasound-induced blood-retinal barrier opening in mice. Pharmaceutics. 2023;15:1896.
Google Scholar
Brawek B, Olmedillas Del Moral M, Garaschuk O. In Vivo visualization of microglia using tomato lectin. Methods Mol Biol. 2019;2034:165–75.
Google Scholar
Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.
Google Scholar
Brody J, Waller S, Wagoner M. Corneal topography: history, technique, and clinical uses. Int Ophthalmol Clin. 1994;34:197–207.
Google Scholar
Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem. 2011;83:3224–31.
Google Scholar
Canonica J, Foxton R, Garrido MG, Lin CM, Uhles S, Shanmugam S, Antonetti DA, Abcouwer SF, Westenskow PD. Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion. Front Cell Neurosci. 2023;17:1192464.
Google Scholar
Cavallerano J, Lawrence MG, Zimmer-Galler I, Bauman W, Bursell S, Gardner WK, Horton M, Hildebrand L, Federman J, Carnahan L, Kuzmak P, Peters JM, Darkins A, Ahmed J, Aiello LM, Aiello LP, Buck G, Cheng YL, Cunningham D, Goodall E, Hope N, Huang E, Hubbard L, Janczewski M, Lewis JW, Matsuzaki H, McVeigh FL, Motzno J, Parker-Taillon D, Read R, Soliz P, Szirth B, Vigersky RA, Ward T. Telehealth practice recommendations for diabetic retinopathy. Telemed J E Health. 2004;10:469–82.
Google Scholar
Cen LP, Ji J, Lin JW, Ju ST, Lin HJ, Li TP, Wang Y, Yang JF, Liu YF, Tan S, Tan L, Li D, Wang Y, Zheng D, Xiong Y, Wu H, Jiang J, Wu Z, Huang D, Shi T, Chen B, Yang J, Zhang X, Luo L, Huang C, Zhang G, Huang Y, Ng TK, Chen H, Chen W, Pang CP, Zhang M. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun. 2021;12:4828.
Google Scholar
Chan KC, Fan SJ, Zhou IY, Wu EX. In vivo chromium-enhanced MRI of the retina. Magn Reson Med. 2012;68:1202–10.
Google Scholar
Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006;47:3595–602.
Google Scholar
Chen J, Wang Q, Zhang H, Yang X, Wang J, Berkowitz BA, Wickline SA, Song SK. In vivo quantification of T1, T2, and apparent diffusion coefficient in the mouse retina at 11.74T. Magn Reson Med. 2008;59:731–8.
Google Scholar
Chen L, Yang P, Kijlstra A. Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm. 2002;10:27–39.
Google Scholar
Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015;98:713–25.
Google Scholar
Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7:654–69.
Google Scholar
Cheng H, Nair G, Walker TA, Kim MK, Pardue MT, Thule PM, Olson DE, Duong TQ. Structural and functional MRI reveals multiple retinal layers. Proc Natl Acad Sci USA. 2006;103:17525–30.
Google Scholar
Cheung N, Liew G, Lindley RI, Liu EY, Wang JJ, Hand P, Baker M, Mitchell P, Wong TY, Retina Multi-Center, and Group Stroke Study Collaborative. Retinal fractals and acute lacunar stroke. Ann Neurol. 2010;68:107–11.
Google Scholar
Christinaki E, Kulenovic H, Hadoux X, Baldassini N, Van Eijgen J, De Groef L, Stalmans I, van Wijngaarden P. Retinal imaging biomarkers of neurodegenerative diseases. Clin Exp Optom. 2022;105:194–204.
Google Scholar
Consejo A, Melcer T, Rozema JJ. Introduction to machine learning for ophthalmologists. Semin Ophthalmol. 2019;34:19–41.
Google Scholar
Crespo-Garcia S, Reichhart N, Hernandez-Matas C, Zabulis X, Kociok N, Brockmann C, Joussen AM, Strauss O. In vivo analysis of the time and spatial activation pattern of microglia in the retina following laser-induced choroidal neovascularization. Exp Eye Res. 2015;139:13–21.
Google Scholar
Csaszar E, Lenart N, Cserep C, Kornyei Z, Fekete R, Posfai B, Balazsfi D, Hangya B, Schwarcz AD, Szabadits E, Szollosi D, Szigeti K, Mathe D, West BL, Sviatko K, Bras AR, Mariani JC, Kliewer A, Lenkei Z, Hricisak L, Benyo Z, Baranyi M, Sperlagh B, Menyhart A, Farkas E, Denes A. Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. J Exp Med. 2022;219:3.
Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.
Google Scholar
Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci. 2001;42:1855–66.
Google Scholar
Dos Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, Garhofer G, Werkmeister RM. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express. 2019;10:622–41.
Google Scholar
Duck FA. Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol. 2007;93:176–91.
Google Scholar
Duong TQ. Magnetic resonance imaging of the retina: a brief historical and future perspective. Saudi J Ophthalmol. 2011;25:137–43.
Google Scholar
Duong TQ, Muir ER. Magnetic resonance imaging of the retina. Jpn J Ophthalmol. 2009;53:352–67.
Google Scholar
Edelman JL, Miller SS. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1991;32:3033–40.
Google Scholar
Emma Beede, Elizabeth Baylor, Fred Hersch, Anna Iurchenko, Lauren Wilcox, Paisan Ruamviboonsuk, Laura M. Vardoulakis. 2020. “A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy”. In CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12. Honolulu HI USA: Association for Computing Machinery.
Feng J, Chen X, Sun X, Wang F, Sun X. Expression of endoplasmic reticulum stress markers GRP78 and CHOP induced by oxidative stress in blue light-mediated damage of A2E-containing retinal pigment epithelium cells. Ophthalmic Res. 2014;52:224–33.
Google Scholar
Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. 2021;2021:6096017.
Google Scholar
Fragiotta S, Rossi T, Cutini A, Grenga PL, Vingolo EM. Predictive factors for development of neovascular age-related macular degeneration: a spectral-domain optical coherence Tomography Study. Retina. 2018;38:245–52.
Google Scholar
Framme C, Wolf S, Wolf-Schnurrbusch U. Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51:5965–9.
Google Scholar
Frampton GK, Kalita N, Payne L, Colquitt JL, Loveman E, Downes SM, Lotery AJ. Fundus autofluorescence imaging: systematic review of test accuracy for the diagnosis and monitoring of retinal conditions. Eye. 2017;31:995–1007.
Google Scholar
Francis AW, Wanek J, Lim JI, Shahidi M. Enface thickness mapping and reflectance imaging of retinal layers in diabetic retinopathy. PLoS ONE. 2015;10: e0145628.
Google Scholar
Freund I, Deutsch M. Second-harmonic microscopy of biological tissue. Opt Lett. 1986;11:94.
Google Scholar
Fujimoto, J., and E. Swanson. 2016. ‘The Development, Commercialization, and Impact of Optical Coherence Tomography’, Invest Ophthalmol Vis Sci, 57: OCT1-OCT13.
Galetta KM, Calabresi PA, Frohman EM, Balcer LJ. Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics. 2011;8:117–32.
Google Scholar
Gallemore RP, Hughes BA, Miller SS. Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retinal Eye Res. 1997;16:509–66.
Google Scholar
Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007;102:1095–104.
Google Scholar
Gass JD. Drusen and disciform macular detachment and degeneration. Trans Am Ophthalmol Soc. 1972;70:409–36.
Google Scholar
Gass JD, Sever RJ, Sparks D, Goren J. A combined technique of fluorescein funduscopy and angiography of the eye. Arch Ophthalmol. 1967;78:455–61.
Google Scholar
Gerloff O. Uber die photographie des Augenhintergrundes. Klin Monatsblätter Augenheilkunde. 1891;5:397–403.
Ghods A, Cook DJ. A survey of deep network techniques all classifiers can adopt. Data Min Knowl Discov. 2021;35:46–87.
Google Scholar
Gosnell ME, Staikopoulos V, Anwer AG, Mahbub SB, Hutchinson MR, Mustafa S, Goldys EM. Autofluorescent imprint of chronic constriction nerve injury identified by deep learning. Neurobiol Dis. 2021;160: 105528.
Google Scholar
Grewal DS, O’Sullivan ML, Kron M, Jaffe GJ. Association of disorganization of retinal inner layers with visual acuity in eyes with uveitic cystoid macular edema. Am J Ophthalmol. 2017;177:116–25.
Google Scholar
Gullstrand A. Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft. 1910;6:42.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.
Google Scholar
Gupta AK, Meng R, Modi YS, Srinivasan VJ. Imaging human macular pigments with visible light optical coherence tomography and superluminescent diodes. Opt Lett. 2023;48:4737–40.
Google Scholar
Hadoux X, Hui F, Lim JKH, Masters CL, Pebay A, Chevalier S, Ha J, Loi S, Fowler CJ, Rowe C, Villemagne VL, Taylor EN, Fluke C, Soucy JP, Lesage F, Sylvestre JP, Rosa-Neto P, Mathotaarachchi S, Gauthier S, Nasreddine ZS, Arbour JD, Rheaume MA, Beaulieu S, Dirani M, Nguyen CTO, Bui BV, Williamson R, Crowston JG, van Wijngaarden P. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun. 2019;10:4227.
Google Scholar
Hikage F, Lennikov A, Mukwaya A, Lachota M, Ida Y, Utheim TP, Chen DF, Huang H, Ohguro H. NF-kappaB activation in retinal microglia is involved in the inflammatory and neovascularization signaling in laser-induced choroidal neovascularization in mice. Exp Cell Res. 2021;403: 112581.
Google Scholar
Hildred RB. A brief history on the development of ophthalmic retinal photography into digital imaging. J Audiov Media Med. 1990;13:101–5.
Google Scholar
Hogg RE, Silva R, Staurenghi G, Murphy G, Santos AR, Rosina C, Chakravarthy U. Clinical characteristics of reticular pseudodrusen in the fellow eye of patients with unilateral neovascular age-related macular degeneration. Ophthalmology. 2014;121:1748–55.
Google Scholar
Horii T, Murakami T, Nishijima K, Akagi T, Uji A, Arakawa N, Muraoka Y, Yoshimura N. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology. 2012;119:1047–55.
Google Scholar
Hospital, The Royal Victorian Eye and Ear. 2020. Retinal angiogram,. Accessed 03 May 2023.
Huang CH, Yang CH, Lai YJ, Hsiao CK, Hou YC, Yang CM, Chen TC. Hyperreflective foci as important prognostic indicators of progression of retinitis pigmentosa. Retina. 2022;42:388–95.
Google Scholar
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254:1178–81.
Google Scholar
Hwang DK, Hsu CC, Chang KJ, Chao D, Sun CH, Jheng YC, Yarmishyn AA, Wu JC, Tsai CY, Wang ML, Peng CH, Chien KH, Kao CL, Lin TC, Woung LC, Chen SJ, Chiou SH. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics. 2019;9:232–45.
Google Scholar
Ignatova I, Frolov R, Nymark S. The retinal pigment epithelium displays electrical excitability and lateral signal spreading. BMC Biol. 2023;21:84.
Google Scholar
Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR, Wong WT. 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 2015;5:9144.
Google Scholar
Ivanisevic M, Stanic R, Ivanisevic P, Vukovic A. Albrecht von Graefe (1828–1870) and his contributions to the development of ophthalmology. Int Ophthalmol. 2020;40:1029–33.
Google Scholar
Jackman WT, Webster JD. On photographing the retina of the living human eye. Philadel Photogr. 1886;23:340–1.
Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.
Google Scholar
Janez-Garcia L, Bachtoula O, Salobrar-Garcia E, de Hoz R, Ramirez AI, Gil P, Ramirez JM, Janez-Escalada L. Roughness of retinal layers in Alzheimer’s disease. Sci Rep. 2021;11:11804.
Google Scholar
Jansen LG, Schultz T, Holz FG, Finger RP, Wintergerst MWM. Smartphone-based fundus imaging: applications and adapters. Ophthalmologe. 2022;119:112–26.
Google Scholar
Kalra G, Pichi F, Kumar Menia N, Shroff D, Phasukkijwatana N, Aggarwal K, Agarwal A. Recent advances in wide field and ultrawide field optical coherence tomography angiography in retinochoroidal pathologies. Expert Rev Med Devices. 2021;18:375–86.
Google Scholar
Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27:622–47.
Google Scholar
Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res. 2008;5:71–81.
Google Scholar
Kelly D, Coen RF, Akuffo KO, Beatty S, Dennison J, Moran R, Stack J, Howard AN, Mulcahy R, Nolan JM. Cognitive function and its relationship with macular pigment optical density and serum concentrations of its constituent carotenoids. J Alzheimers Dis. 2015;48:261–77.
Google Scholar
Kim SY, Yang HJ, Chang YS, Kim JW, Brooks M, Chew EY, Wong WT, Fariss RN, Rachel RA, Cogliati T, Qian H, Swaroop A. Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Invest Ophthalmol Vis Sci. 2014;55:6031–40.
Google Scholar
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11: 564077.
Google Scholar
Kinyoun JL, Martin DC, Fujimoto WY, Leonetti DL. Ophthalmoscopy versus fundus photographs for detecting and grading diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992;33:1888–93.
Google Scholar
Kobat SG, Turgut B. Importance of Muller Cells. Beyoglu Eye J. 2020;5:59–63.
Google Scholar
Kohlfaerber T, Pieper M, Munter M, Holzhausen C, Ahrens M, Idel C, Bruchhage KL, Leichtle A, Konig P, Huttmann G, Schulz-Hildebrandt H. Dynamic microscopic optical coherence tomography to visualize the morphological and functional micro-anatomy of the airways. Biomed Opt Express. 2022;13:3211–23.
Google Scholar
Kolb H. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos Trans R Soc Lond B Biol Sci. 1970;258:261–83.
Google Scholar
Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54(Suppl 1):S204–17.
Google Scholar
Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A, Fuchs DT, Ashfaq A, Frautschy S, Cole GM, Miller CA, Hinton DR, Verdooner SR, Black KL, Koronyo-Hamaoui M. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2:8.
Google Scholar
Krishnan CVRKS. A new type of secondary radiation. Nature. 1928;121:501–2.
Google Scholar
Kulkarni S, Deshpande M. Recent advances in retinal imaging and diagnostics. Commun Eye Health. 2019;32:S9–10.
Lakkaraju A, Finnemann SC, Rodriguez-Boulan E. The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A. 2007;104:11026–31.
Google Scholar
Lei L, Tzekov R, Tang S, Kaushal S. Accumulation and autofluorescence of phagocytized rod outer segment material in macrophages and microglial cells. Mol Vis. 2012;18:103–13.
Google Scholar
Leinenga G, Bodea LG, Schroder J, Sun G, Zhou Y, Song J, Grubman A, Polo JM, Gotz J. Transcriptional signature in microglia isolated from an Alzheimer’s disease mouse model treated with scanning ultrasound. Bioeng Transl Med. 2023;8: e10329.
Google Scholar
Lemire S, Thoma OM, Kreiss L, Volkl S, Friedrich O, Neurath MF, Schurmann S, Waldner MJ. Natural NADH and FAD autofluorescence as label-free biomarkers for discriminating subtypes and functional states of immune cells. Int J Mol Sci. 2022;23:2338.
Google Scholar
Li J, Yan P, Li Y, Han M, Zeng Q, Li J, Yu Z, Zhang D, Chen X. Harnessing the power of Raman spectroscopic imaging for ophthalmology. Front Chem. 2023;11:1211121.
Google Scholar
Li LJ, Ikram MK, Wong TY. Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease. J Physiol. 2016;594:2175–203.
Google Scholar
Li Y, Teng X, Yang C, Wang Y, Wang L, Dai Y, Sun H, Li J. Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew Chem Int Ed Engl. 2021;60:5083–90.
Google Scholar
Li Z, Jiang J, Chen K, Chen Q, Zheng Q, Liu X, Weng H, Wu S, Chen W. Preventing corneal blindness caused by keratitis using artificial intelligence. Nat Commun. 2021;12:3738.
Google Scholar
Lim H, Danias J. Effect of axonal micro-tubules on the morphology of retinal nerve fibers studied by second-harmonic generation. J Biomed Opt. 2012;17: 110502.
Google Scholar
Lim JK, Li QX, He Z, Vingrys AJ, Wong VH, Currier N, Mullen J, Bui BV, Nguyen CT. The eye as a biomarker for Alzheimer’s disease. Front Neurosci. 2016;10:536.
Google Scholar
Lin TY, Motamedi S, Asseyer S, Chien C, Saidha S, Calabresi PA, Fitzgerald KC, Samadzadeh S, Villoslada P, Llufriu S, Green AJ, Preiningerova JL, Petzold A, Leocani L, Garcia-Martin E, Oreja-Guevara C, Outteryck O, Vermersch P, Balcer LJ, Kenney R, Albrecht P, Aktas O, Costello F, Frederiksen J, Uccelli A, Cellerino M, Frohman EM, Frohman TC, Bellmann-Strobl J, Schmitz-Hubsch T, Ruprecht K, Brandt AU, Zimmermann HG, Paul F. Individual prognostication of disease activity and disability worsening in multiple sclerosis with retinal layer thickness z scores. Neurol Neuroimmunol Neuroinflamm. 2024;11: e200269.
Google Scholar
Liu J, Chen Y, Wang G, Lv Q, Yang Y, Wang J, Zhang P, Liu J, Xie Y, Zhang L, Xie M. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials. 2018;162:200–7.
Google Scholar
Loffler KU, Edward DP, Tso MO. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci. 1995;36:24–31.
Google Scholar
Ma D, Deng W, Khera Z, Sajitha TA, Wang X, Wollstein G, Schuman JS, Lee S, Shi H, Ju MJ, Matsubara J, Beg MF, Sarunic M, Sappington RM, Chan KC. Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography. Acta Neuropathol Commun. 2024;12:19.
Google Scholar
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: connecting basic science with clinical applications. Front Ophthalmol. 2023;2:23.
Google Scholar
MacGillivray TJ, Cameron JR, Zhang Q, El-Medany A, Mulholland C, Sheng Z, Dhillon B, Doubal FN, Foster PJ, Trucco E, Sudlow C, U. K. Biobank Eye, and Consortium Vision. Suitability of UK biobank retinal images for automatic analysis of morphometric properties of the vasculature. PLoS ONE. 2015;10:e0127914.
Google Scholar
Maeda A, Golczak M, Chen Y, Okano K, Kohno H, Shiose S, Ishikawa K, Harte W, Palczewska G, Maeda T, Palczewski K. Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat Chem Biol. 2011;8:170–8.
Google Scholar
Makabe K, Sugita S, Mandai M, Futatsugi Y, Takahashi M. Microglia dynamics in retinitis pigmentosa model: formation of fundus whitening and autofluorescence as an indicator of activity of retinal degeneration. Sci Rep. 2020;10:14700.
Google Scholar
Malhotra A, Minja FJ, Crum A, Burrowes D. Ocular anatomy and cross-sectional imaging of the eye. Semin Ultrasound CT MR. 2011;32:2–13.
Google Scholar
Vilela MAP, Valença FM, Barreto PKM, Amaral CEV, Pellanda LC. Agreement between retinal images obtained via smartphones and images obtained with retinal cameras or fundoscopic exams—systematic review and meta-analysis. Clinical opthalmology. 2018;12:2581–9.
Google Scholar
Marro M, Taubes A, Abernathy A, Balint S, Moreno B, Sanchez-Dalmau B, Martinez-Lapiscina EH, Amat-Roldan I, Petrov D, Villoslada P. Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis. J Biophotonics. 2014;7:724–34.
Google Scholar
Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid Med Cell Longev. 2017;2017:9208489.
Google Scholar
McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Sharrett AR, Klein BE, Wang JJ, Chambless LE, Wong TY. Risk prediction of coronary heart disease based on retinal vascular caliber (from the atherosclerosis risk in communities [ARIC] study). Am J Cardiol. 2008;102:58–63.
Google Scholar
Meah A, Boodram V, Bucinca-Cupallari F, Lim H. Axonal architecture of the mouse inner retina revealed by second harmonic generation. PNAS Nexus. 2022;1:pgac160.
Google Scholar
Torresin T, Lupidi M, Frizziero L, Toto L, Covello G, Midena G, Pilotto E, Figus M, Mariotti C, Midena E. OCT hyperreflective retinal foci as sign of microglial activation in diabetic retinopathy: an AI automatic quantification approach. Investig Ophthalmol Vis Sci. 2023;64:1288.
Miller EB, Karlen SJ, Ronning KE, Burns ME. Tracking distinct microglia subpopulations with photoconvertible Dendra2 in vivo. J Neuroinflammation. 2021;18:235.
Google Scholar
Miller EB, Zhang P, Ching K, Pugh EN Jr, Burns ME. In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury. Proc Natl Acad Sci USA. 2019;116:16603–12.
Google Scholar
More SS, Beach JM, McClelland C, Mokhtarzadeh A, Vince R. In Vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer’s disease. ACS Chem Neurosci. 2019;10:4492–501.
Google Scholar
Nagaraju RM, Gurushankar G, Bhimarao, and B. Kadakola. Efficacy of high frequency ultrasound in localization and characterization of orbital lesions. J Clin Diagn Res. 2015;9:TC01-6.
Google Scholar
Naor O, Hertzberg Y, Zemel E, Kimmel E, Shoham S. Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis. J Neural Eng. 2012;9: 026006.
Google Scholar
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide “insight” into cortical pharmacology and disease. Pharmacol Ther. 2017;175:151–77.
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.
Google Scholar
Ning A, Cui J, To E, Ashe KH, Matsubara J. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci. 2008;49:5136–43.
Google Scholar
Niwas SI, Lin W, Bai X, Kwoh CK, Jay Kuo CC, Sng CC, Aquino MC, Chew PT. Automated anterior segment OCT image analysis for angle closure glaucoma mechanisms classification. Comput Methods Programs Biomed. 2016;130:65–75.
Google Scholar
Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.
Google Scholar
O’Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, Kalnitsky J, Msallam RA, Silvin A, Kay JN, Bowes Rickman C, Arshavsky VY, Ginhoux F, Merad M, Saban DR. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity. 2019;50(723–37): e7.
Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, Ota M, Yoshimura N. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32:77–85.
Google Scholar
Oishi A, Miyata M, Numa S, Otsuka Y, Oishi M, Tsujikawa A. Wide-field fundus autofluorescence imaging in patients with hereditary retinal degeneration: a literature review. Int J Retina Vitreous. 2019;5:23.
Google Scholar
Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, Teoh S, Lim TH, Agrawal R. Fundus photography in the 21st century–a review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health. 2016;22:198–208.
Google Scholar
Parida H, Kannan NB, Rathinam SR. Imaging of Muller cell sheen dystrophy. Indian J Ophthalmol. 2020;68:533–5.
Google Scholar
Park CY, Lee JK, Chuck RS. Second harmonic generation imaging analysis of collagen arrangement in human cornea. Invest Ophthalmol Vis Sci. 2015;56:5622–9.
Google Scholar
Patil SA, Joseph B, Tagliani P, Sastre-Garriga J, Montalban X, Vidal-Jordana A, Galetta SL, Balcer LJ, Kenney RC. Longitudinal stability of inter-eye differences in optical coherence tomography measures for identifying unilateral optic nerve lesions in multiple sclerosis. J Neurol Sci. 2023;449: 120669.
Google Scholar
Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Fleckenstein B, Jung G, Hamprecht B. Glycogen phosphorylase isozyme pattern in mammalian retinal Muller (glial) cells and in astrocytes of retina and optic nerve. Glia. 2005;49:84–95.
Google Scholar
Phipps JA, Vessey KA, Brandli A, Nag N, Tran MX, Jobling AI, Fletcher EL. The role of angiotensin II/AT1 receptor signaling in regulating retinal microglial activation. Invest Ophthalmol Vis Sci. 2018;59:487–98.
Google Scholar
Quiriconi P, Hristov V, Aburaya M, Greferath U, Jobling AI, Fletcher EL. The role of microglia in the development of diabetic retinopathy. Metabol Health Dis. 2024;2:14.
Pichi F, Neri P, Moreno-Rodriguez L, Carreno E. Dancing in the eye: dynamic optical coherence tomography to distinguish different retinal microglia populations. Int Ophthalmol. 2024;44:165.
Google Scholar
Pilotto E, Torresin T, Bacelle ML, De Moja G, Ferrara AM, Zovato S, Midena G, Midena E. Hyper-reflective retinal foci as possible in vivo imaging biomarker of microglia activation in von Hippel-Lindau disease. PLoS ONE. 2022;17: e0272318.
Google Scholar
Pollreisz A, Kunze LE, Brunner E, Drexler W, Schmidt-Erfurth U, Pircher M. Quantitative assessment of retinal microglia by volumetric adaptive optics OCT in eyes with diabetic retinopathy. Investig Ophthalmol Visual Sci. 2024;65:2178.
Polyakova Z, Iwase M, Hashimoto R, Yoshida M. The effect of ketamine on eye movement characteristics during free-viewing of natural images in common marmosets. Front Neurosci. 2022;16:1012300.
Google Scholar
Puthenparampil M, Torresin T, Franciotta S, Marin A, De Napoli F, Mauceri VA, Miante S, Pilotto E, Midena E, Gallo P. Hyper-reflecting foci in multiple sclerosis retina associate with macrophage/microglia-derived cytokines in cerebrospinal fluid. Front Immunol. 2022;13: 852183.
Google Scholar
Rajkomar A, Dean J, Kohane I. Machine learning in medicine reply. N Engl J Med. 2019;380:2589–90.
Google Scholar
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration. Front Immunol. 2019;10:1975.
Google Scholar
Rashidi HH, Tran NK, Betts EV, Howell LP, Green R. Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad Pathol. 2019;6:2374289519873088.
Google Scholar
Rodriguez IR, Clark ME, Lee JW, Curcio CA. 7-ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen. Exp Eye Res. 2014;128:151–5.
Google Scholar
Rovati L, Fankhauser F, Docchio F, Van Best J. Diabetic retinopathy assessed by dynamic light scattering and corneal autofluorescence. J Biomed Opt. 1998;3:357–63.
Google Scholar
Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T. “Blue light-induced reactivity of retinal age pigment In vitro generation of oxygen-reactive species.” J Biol Chem. 1995;270:18825–30.
Google Scholar
Rui Y, Zhang M, Lee DMW, Snyder VC, Raghuraman R, Gofas-Salas E, Mece P, Yadav S, Tiruveedhula P, Grieve K, Sahel JA, Errera MH, Rossi EA. Label-free imaging of inflammation at the level of single cells in the living human eye. Ophthalmol Sci. 2024;4: 100475.
Google Scholar
Salas M, Augustin M, Ginner L, Kumar A, Baumann B, Leitgeb R, Drexler W, Prager S, Hafner J, Schmidt-Erfurth U, Pircher M. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics. Biomed Opt Express. 2017;8:207–22.
Google Scholar
Sasamoto Y, Gomi F, Sawa M, Sakaguchi H, Tsujikawa M, Nishida K. Effect of cataract in evaluation of macular pigment optical density by autofluorescence spectrometry. Invest Ophthalmol Vis Sci. 2011;52:927–32.
Google Scholar
Say EA, Shah SU, Ferenczy S, Shields CL. Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol. 2011;2011: 385058.
Google Scholar
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovic H. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1–29.
Google Scholar
Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol. 2004;6:1054–61.
Google Scholar
Seyyed-Kalantari L, Zhang H, McDermott MBA, Chen IY, Ghassemi M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med. 2021;27:2176–82.
Google Scholar
Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z. Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: a systematic review. Surv Ophthalmol. 2023;68:42–53.
Google Scholar
Shen Q, Cheng H, Pardue MT, Chang TF, Nair G, Vo VT, Shonat RD, Duong TQ. Magnetic resonance imaging of tissue and vascular layers in the cat retina. J Magn Reson Imaging. 2006;23:465–72.
Google Scholar
Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111:1452–60.
Google Scholar
Sivak JM. The aging eye: common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest Ophthalmol Vis Sci. 2013;54:871–80.
Google Scholar
Smith RT, Chan JK, Busuoic M, Sivagnanavel V, Bird AC, Chong NV. Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47:5495–504.
Google Scholar
Snyder PJ, Alber J, Alt C, Bain LJ, Bouma BE, Bouwman FH, DeBuc DC, Campbell MCW, Carrillo MC, Chew EY, Cordeiro MF, Duenas MR, Fernandez BM, Koronyo-Hamaoui M, La Morgia C, Carare RO, Sadda SR, van Wijngaarden P, Snyder HM. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers Dement. 2021;17:103–11.
Google Scholar
Sominsky L, De Luca S, Spencer SJ. Microglia: Key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol. 2018;94:56–60.
Google Scholar
Song PI, Matsui JI, Dowling JE. Morphological types and connectivity of horizontal cells found in the adult zebrafish (Danio rerio) retina. J Comp Neurol. 2008;506:328–38.
Google Scholar
Sparrow JM, Bron AJ, Brown NA, Neil HA. Autofluorescence of the crystalline lens in early and late onset diabetes. Br J Ophthalmol. 1992;76:25–31.
Google Scholar
Sparrow JR, Cai B. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci. 2001;42:1356–62.
Google Scholar
Sparrow JR, Cai B, Jang YP, Zhou J, Nakanishi K. A2E, a fluorophore of RPE lipofuscin, can destabilize membrane. Adv Exp Med Biol. 2006;572:63–8.
Google Scholar
Stiebing C, Jahn IJ, Schmitt M, Keijzer N, Kleemann R, Kiliaan AJ, Drexler W, Leitgeb RA, Popp J. Biochemical characterization of mouse retina of an Alzheimer’s disease model by raman spectroscopy. ACS Chem Neurosci. 2020;11:3301–8.
Google Scholar
Straub J, Sprowl RA. Technical and optical aspects of smartphone-based fundus photography: possibilities and limitations in practice. Ophthalmologe. 2022;119:127–35.
Google Scholar
Tan HY, Sun Y, Lo W, Teng SW, Wu RJ, Jee SH, Lin WC, Hsiao CH, Lin HC, Chen YF, Ma DH, Huang SC, Lin SJ, Dong CY. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis. J Biomed Opt. 2007;12: 024013.
Google Scholar
Thal DR, Ghebremedhin E, Haass C, Schultz C. UV light-induced autofluorescence of full-length Abeta-protein deposits in the human brain. Clin Neuropathol. 2002;21:35–40.
Google Scholar
Thompson DA, Gal A. Genetic defects in vitamin A metabolism of the retinal pigment epithelium. Dev Ophthalmol. 2003;37:141–54.
Google Scholar
Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318:2211–23.
Google Scholar
Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina. 2013;33:490–7.
Google Scholar
Van Schaik HJ, Alkemade C, Swart W, Van Best JA. Autofluorescence of the diabetic and healthy human cornea in vivo at different excitation wavelengths. Exp Eye Res. 1999;68:1–8.
Google Scholar
Van Trigt, AC. 1853. ‘Trajecti ad Rhenum’, Dissertatio ophthalmologica inauguralis de speculo oculi.
van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007;26:57–77.
Google Scholar
Vinay A. Shah, Robert A Hyde, Alexander Engelmann, Jennifer I Lim, Jay Chhablani, Peter A.Karth, Nikhila Khandwala, Cassie Huang. 2023. ‘Peripheral Retinal Degenerations’, American Academy of Ophthalmology. Accessed 3 Dec.
von Helmholtz, HLF. 1851. ‘Beschreibung eines Augen-Spiegels’, A Farstnerische Verlagsbuchhandlung.
Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, Ferraz D, Korot E, Kelly C, Balaskas K, Denniston AK, Keane PA. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol. 2020;9:6.
Google Scholar
Waldstein SM, Vogl WD, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-Erfurth U. Characterization of Drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA Ophthalmol. 2020;138:740–7.
Google Scholar
Walsh AJ, Mueller KP, Tweed K, Jones I, Walsh CM, Piscopo NJ, Niemi NM, Pagliarini DJ, Saha K, Skala MC. Classification of T-cell activation via autofluorescence lifetime imaging. Nat Biomed Eng. 2021;5:77–88.
Google Scholar
Wang NK, Lai CC, Liu CH, Yeh LK, Chou CL, Kong J, Nagasaki T, Tsang SH, Chien CL. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome. Dis Model Mech. 2013;6:1113–22.
Google Scholar
Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS, Gan WB, Roger JE, Wong WT. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36:2827–42.
Google Scholar
Wang YL, Yang JY, Yang JY, Zhao XY, Chen YX, Yu WH. Progress of artificial intelligence in diabetic retinopathy screening. Diabetes Metab Res Rev. 2021;37: e3414.
Google Scholar
Wang ZJ, Walsh AJ, Skala MC, Gitter A. Classifying T cell activity in autofluorescence intensity images with convolutional neural networks. J Biophotonics. 2020;13: e201960050.
Google Scholar
Nguyen CL, Wayenborgh JP. Hermann von Helmholtz: the ophthalmoscope and some of his other contributions to ophthalmology. Hist Ophthal Intern. 2015;1:165–77.
Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Biomed Eng. 1981;28:488–92.
Google Scholar
Whitmore SS, DeLuca AP, Andorf JL, Cheng JL, Mansoor M, Fortenbach CR, Critser DB, Russell JF, Stone EM, Han IC. Modeling rod and cone photoreceptor cell survival in vivo using optical coherence tomography. Sci Rep. 2023;13:6896.
Google Scholar
Wintergerst MWM, Mishra DK, Hartmann L, Shah P, Konana VK, Sagar P, Berger M, Murali K, Holz FG, Shanmugam MP, Finger RP. Diabetic retinopathy screening using smartphone-based fundus imaging in India. Ophthalmology. 2020;127:1529–38.
Google Scholar
Wolfing JI, Chung M, Carroll J, Roorda A, Williams DR. High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology. 2006;113(1019): e1.
Wong TY, Cheung N, Islam FM, Klein R, Criqui MH, Cotch MF, Carr JJ, Klein BE, Sharrett AR. Relation of retinopathy to coronary artery calcification: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2008;167:51–8.
Google Scholar
Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, Yip MYT, Qi Lee X, Hsu W, Li Lee M, Tan CS, Tym Wong H, Lamoureux EL, Tan GSW, Wong TY, Finkelstein EA, Ting DSW. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health. 2020;2:e240–9.
Google Scholar
Yannuzzi LA. The retinal atlas. Elsevier: New York; 2010.
Young LH, Kim J, Yakin M, Lin H, Dao DT, Kodati S, Sharma S, Lee AY, Lee CS, Sen HN. Automated detection of vascular leakage in fluorescein angiography—a proof of concept. Transl Vis Sci Technol. 2022;11:19.
Google Scholar
Chen Y, Shi Z, Shen Y. Eye damage due to cosmetic ultrasound treatment: a case report. BMC Ophthalmol. 2018;18:1.
Google Scholar
Yuksel S, Aredo B, Zegeye Y, Zhao CX, Tang M, Li X, Hulleman JD, Gautron L, Ludwig S, Moresco EMY, Butovich IA, Beutler BA, Ufret-Vincenty RL. Forward genetic screening using fundus spot scale identifies an essential role for Lipe in murine retinal homeostasis. Commun Biol. 2023;6:533.
Google Scholar
Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitreous. 2016;2:12.
Google Scholar
Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126:227–32.
Google Scholar
Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, Shi R, Tu X, Jin K, Wang Y, Zhang Z, Yang GY. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10:74–90.
Google Scholar
Zhang Q, Rezaei KA, Saraf SS, Chu Z, Wang F, Wang RK. Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant Imaging Med Surg. 2018;8:743–53.
Google Scholar
Zhang Y, Harrison JM, Nateras OS, Chalfin S, Duong TQ. Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI. Doc Ophthalmol. 2013;126:187–97.
Google Scholar
Zhang Y, Nateras OS, Peng Q, Kuranov RV, Harrison JM, Milner TE, Duong TQ. Lamina-specific anatomic magnetic resonance imaging of the human retina. Invest Ophthalmol Vis Sci. 2011;52:7232–7.
Google Scholar
Zhang Y, Nateras OS, Peng Q, Rosende CA, Duong TQ. Blood flow MRI of the human retina/choroid during rest and isometric exercise. Invest Ophthalmol Vis Sci. 2012;53:4299–305.
Google Scholar
Zhao N, Hao XN, Huang JM, Song ZM, Tao Y. Crosstalk between microglia and muller glia in the age-related macular degeneration: role and therapeutic value of neuroinflammation. Aging Dis. 2024;15:1132–54.
Google Scholar
Zhao Y, MacCormick IJ, Parry DG, Leach S, Beare NA, Harding SP, Zheng Y. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy. Sci Rep. 2015;5:10425.
Google Scholar
Zhao Y, Zhao J, Gu Y, Chen B, Guo J, Xie J, Yan Q, Ma Y, Wu Y, Zhang J, Lu Q, Liu J. Outer Retinal layer thickness changes in white matter hyperintensity and Parkinson’s disease. Front Neurosci. 2021;15: 741651.
Google Scholar
Zhou R, Horai R, Silver PB, Mattapallil MJ, Zarate-Blades CR, Chong WP, Chen J, Rigden RC, Villasmil R, Caspi RR. The living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition. J Immunol. 2012;188:1742–50.
Google Scholar
link