July 8, 2025

Vital Path Care

Together for Your Health

MiRNAs as major players in brain health and disease: current knowledge and future perspectives

MiRNAs as major players in brain health and disease: current knowledge and future perspectives
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article 
    PubMed 

    Google Scholar 

  • Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tüfekci KU, Meuwissen RLJ, Genç S. The role of MicroRNAs in biological processes. Methods Mol Biol. 2014;1107:15–31.

    Article 
    PubMed 

    Google Scholar 

  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostrom QT, Adel Fahmideh M, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, et al. Risk factors for childhood and adult primary brain tumors. Neuro Oncol. 2019;21(11):1357–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel DR, Merrick J. Neurodevelopmental and neurobehavioral disorders. Transl Pediatr. 2020;9:S1–2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article 

    Google Scholar 

  • Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519(7544):482–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432(7014):231–5.

    Article 
    PubMed 

    Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article 
    PubMed 

    Google Scholar 

  • Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, et al. ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol. 2010;17(1):17–23.

    Article 
    PubMed 

    Google Scholar 

  • Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5’UTR of RUNX3. Oncol Lett. 2018;15(5):7215–20.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8(11):e79467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA. 2008;105(39):14879–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jo MH, Shin S, Jung SR, Kim E, Song JJ, Hohng S. Human argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell. 2015;59(1):117–24.

    Article 
    PubMed 

    Google Scholar 

  • Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and argonaute 2. Cell. 2007;128(6):1105–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeinali T, Mansoori B, Mohammadi A, Baradaran B. Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother. 2019;109:195–207.

    Article 
    PubMed 

    Google Scholar 

  • Liguoro D, Frigerio R, Ortolano A, Sacconi A, Acunzo M, Romano G, et al. The MITF/mir-579-3p regulatory axis dictates BRAF-mutated melanoma cell fate in response to MAPK inhibitors. Cell Death Dis. 2024;15(3):208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi X, Kaller M, Rokavec M, Kirchner T, Horst D, Hermeking H. Characterization of a p53/miR-34a/CSF1R/STAT3 feedback loop in colorectal cancer. Cell Mol Gastroenterol Hepatol. 2020;10(2):391–418.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 2018;43:64–80.

    Article 
    PubMed 

    Google Scholar 

  • Huan C, Xiaoxu C, Xifang R. Zinc finger protein 521, negatively regulated by MicroRNA-204-5p, promotes proliferation, motility and invasion of gastric cancer cells. Technol Cancer Res Treat. 2019;18:1533033819874783.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu S, Li X, Zhuang S. miR-30c impedes glioblastoma cell proliferation and migration by targeting SOX9. Oncol Res. 2019;27(2):165–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seipel K, Messerli C, Wiedemann G, Bacher U, Pabst T. MN1, FOXP1 and hsa-miR-181a-5p as prognostic markers in acute myeloid leukemia patients treated with intensive induction chemotherapy and autologous stem cell transplantation. Leuk Res. 2020;89:106296.

    Article 
    PubMed 

    Google Scholar 

  • Shindo T, Niinuma T, Nishiyama N, Shinkai N, Kitajima H, Kai M, et al. Epigenetic silencing of miR-200b is associated with cisplatin resistance in bladder cancer. Oncotarget. 2018;9(36):24457–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grasso G, Higuchi T, Mac V, Barbier J, Helsmoortel M, Lorenzi C, et al. NF90 modulates processing of a subset of human pri-miRNAs. Nucleic Acids Res. 2020;48(12):6874–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y, Zou R, Li D, Gao X, Lu X. Exosomal circSTRBP from cancer cells facilitates gastric cancer progression via regulating miR-1294/miR-593-3p/E2F2 axis. J Cell Mol Med. 2024;28(8):e18217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet. 2022;13:973585.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mannironi C, Biundo A, Rajendran S, De Vito F, Saba L, Caioli S, et al. miR-135a regulates synaptic transmission and anxiety-like behavior in amygdala. Mol Neurobiol. 2018;55(4):3301–15.

    Article 
    PubMed 

    Google Scholar 

  • Zheng K, Hu F, Zhou Y, Zhang J, Zheng J, Lai C, et al. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat Commun. 2021;12(1):1903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang X, Lu J, Zhang Q, Luo Q, Liu B. CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis. Biol Res. 2021;54(1):11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen B, Yang W, Zhao H, Liu K, Deng A, Zhang G, et al. Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression. Exp Ther Med. 2020;19(2):1042–50.

    PubMed 

    Google Scholar 

  • Xie B, Lu C, Chen C, Zhou J, Deng Z. miR-135a alleviates silica-induced pulmonary fibrosis by targeting NF-κB/inflammatory signaling pathway. Mediators Inflamm. 2020;2020:1231243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmad A, Zhang W, Wu M, Tan S, Zhu T. Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes Genomics. 2018;40(3):243–51.

    Article 
    PubMed 

    Google Scholar 

  • Mao XW, Xiao JQ, Li ZY, Zheng YC, Zhang N. Effects of microRNA-135a on the epithelial-mesenchymal transition, migration and invasion of bladder cancer cells by targeting GSK3β through the Wnt/β-catenin signaling pathway. Exp Mol Med. 2018;50(1):e429.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhinge A, Poschmann J, Namboori SC, Tian X, Jia Hui Loh S, Traczyk A, et al. MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-β/BMP signaling. EMBO J. 2014;33(11):1271–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL. et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1(3):e90

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang L, Chen Y, Wu S, Tang J, Chen G, Li F. miR-135a suppresses granulosa cell growth by targeting Tgfbr1 and Ccnd2 during folliculogenesis in mice. Cells. 2021;10(8):2104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai M, Wang P, Yang J, Zuo M, Ba Y. Identification of miR-135b as a novel regulator of TGFβ pathway in gastric cancer. J Physiol Biochem. 2020;76(4):549–60.

    Article 
    PubMed 

    Google Scholar 

  • Li J, Liang H, Bai M, Ning T, Wang C, Fan Q, et al. Correction: miR-135b promotes cancer progression by targeting transforming growth factor beta receptor II (TGFBR2) in colorectal cancer. PLoS One. 2015;10(12):e0145589.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao XP, Zhang LS, Huang B, Zhou SY, Liao J, Chen LW, et al. Mir-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer. J Transl Med. 2015;13:86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren JW, Li ZJ, Tu C. MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells. Int J Clin Exp Pathol. 2015;8(6):6356–66.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang PS, Wang CS, Yeh CT, Lin KH. Roles of thyroid hormone-associated microRNAs Affecting oxidative stress in human hepatocellular carcinoma. Int J Mol Sci. 2019;20(20):5220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calderari S, Diawara MR, Garaud A, Gauguier D. Biological roles of microRNAs in the control of insulin secretion and action. Physiol Genomics. 2017;49(1):1–10.

    Article 
    PubMed 

    Google Scholar 

  • Agarwal P, Srivastava R, Srivastava AK, Ali S, Datta M. miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim Biophys Acta. 2013;1832(8):1294–303.

    Article 
    PubMed 

    Google Scholar 

  • Li D, An Y. MiR-135a-5p inhibits vascular smooth muscle cells proliferation and migration by inactivating FOXO1 and JAK2 signaling pathway. Pathol Res Pr. 2021;224:153091.

    Article 

    Google Scholar 

  • Xu Z, Han Y, Liu J, Jiang F, Hu H, Wang Y, et al. MiR-135b-5p and MiR-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting MEF2C. Sci Rep. 2015;5:12276.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun. 2013;4:1877.

    Article 
    PubMed 

    Google Scholar 

  • Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: current management and future application. Cancer Lett. 2020;476:1–12.

    Article 
    PubMed 

    Google Scholar 

  • Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV. Acta Neuropathol. 2018;136(5):805–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, et al. Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology. 2023;108(5):423–31.

    Article 
    PubMed 

    Google Scholar 

  • Davis ME. Epidemiology and overview of gliomas. Semin Oncol Nurs. 2018;34(5):420–9.

    Article 
    PubMed 

    Google Scholar 

  • Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid model and Biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188–204.e22.

    Article 
    PubMed 

    Google Scholar 

  • Bai J, Varghese J, Jain R. Adult glioma WHO classification update, genomics, and imaging: what the radiologists need to know. Top Magn Reson Imaging. 2020;29(2):71–82.

    Article 
    PubMed 

    Google Scholar 

  • Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31(6):737–754.e6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roussel MF, Hatten ME. Cerebellum development and medulloblastoma. Curr Top Dev Biol. 2011;94:235–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, et al. Medulloblastoma. Nat Rev Dis Prim. 2019;5(1):11. Feb 14

    Article 
    PubMed 

    Google Scholar 

  • Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327):1095–9. Dec 23

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cotter JA, Hawkins C. Medulloblastoma: WHO 2021 and beyond. Pediatr Dev Pathol. 2022;25(1):23–33.

    Article 
    PubMed 

    Google Scholar 

  • Raybaud C, Ramaswamy V, Taylor MD, Laughlin S. Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Childs Nerv Syst. 2015;31(10):1661–76.

    Article 
    PubMed 

    Google Scholar 

  • Shroyer NF. Tumor organoids fill the niche. Cell Stem Cell. 2016;18(6):686–7.

    Article 
    PubMed 

    Google Scholar 

  • Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, et al. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv. 2021;3(1):vdab100.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bian S, Repic M, Guo Z, Kavirayani A, Burkard T, Bagley JA, et al. Genetically engineered cerebral organoids model brain tumor formation. Nat Methods. 2018;15(8):631–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu X, Li L, Luo L, Shu L, Si X, Chen Z, et al. Opportunities and challenges of glioma organoids. Cell Commun Signal. 2021;19(1):102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer. 2014;13:33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Che S, Sun T, Wang J, Jiao Y, Wang C, Meng Q, et al. miR-30 overexpression promotes glioma stem cells by regulating Jak/STAT3 signaling pathway. Tumour Biol. 2015;36(9):6805–11.

    Article 
    PubMed 

    Google Scholar 

  • Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: potential biomarkers and therapeutic targets. Exp Mol Pathol. 2020;117:104550.

    Article 
    PubMed 

    Google Scholar 

  • Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, et al. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–8.

    Article 
    PubMed 

    Google Scholar 

  • Swaroop S, Adlakha YK. Crosstalk between microRNAs and epigenetics during brain development and neurological diseases. In: Transcription and Translation in Health and Disease [Internet]. Elsevier; 2023 [cited 2024 May 11]. p. 173–207. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978032399521400009X

  • Kwak S, Park SH, Kim SH, Sung GJ, Song JH, Jeong JH, et al. miR-3189-targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation. J Exp Clin Cancer Res. 2022;41(1):87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med. 2009;87(1):43–51.

    Article 
    PubMed 

    Google Scholar 

  • Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2012;31(15):1884–95.

    Article 
    PubMed 

    Google Scholar 

  • Li M, Xu H, Qi Y, Pan Z, Li B, Gao Z, et al. Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene. 2022;41(41):4618–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lulli V, Buccarelli M, Martini M, Signore M, Biffoni M, Giannetti S, et al. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Oncotarget. 2015;6(35):37241–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang C, Sun W, He H, Zhang B, Ling C, Wang B, et al. Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma. Int J Nanomed. 2018;13:209–20.

    Article 

    Google Scholar 

  • Mokgautsi N, Wen YT, Lawal B, Khedkar H, Sumitra MR, Wu ATH, et al. An integrated bioinformatics study of a novel niclosamide derivative, NSC765689, a potential GSK3β/β-catenin/STAT3/CD44 suppressor with anti-glioblastoma properties. Int J Mol Sci. 2021;22(5):2464. Feb 28

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo W, Sun C, Zhou J, Wang Q, Yu L, Bian XW, et al. miR-135a-5p functions as a glioma proliferation suppressor by targeting tumor necrosis factor receptor-associated factor 5 and predicts patients’ prognosis. Am J Pathol. 2019;189(1):162–76.

    Article 
    PubMed 

    Google Scholar 

  • Wang J, Zhang M, Lu W. Long noncoding RNA GACAT3 promotes glioma progression by sponging miR-135a. J Cell Physiol. 2019;234(7):10877–87.

    Article 
    PubMed 

    Google Scholar 

  • Istiqamah N, Matsuzaka T, Shimizu M, Motomura K, Ohno H, Hasebe S, et al. Identification of key microRNAs regulating ELOVL6 and glioblastoma tumorigenesis. BBA Adv. 2023;3:100078.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mollashahi B, Aghamaleki FS, Movafagh A. The roles of miRNAs in medulloblastoma: a systematic review. J Cancer Prev. 2019;24(2):79–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S, et al. Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res. 2013;73(23):7068–78.

    Article 
    PubMed 

    Google Scholar 

  • Northcott PA, Fernandez-L A, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y, et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 2009;69(8):3249–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fiaschetti G, Abela L, Nonoguchi N, Dubuc AM, Remke M, Boro A, et al. Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. Br J Cancer. 2014;110(3):636–47.

    Article 
    PubMed 

    Google Scholar 

  • Li KKW, Pang JCsean, Ching AKkeung, Wong CK, Kong X, Wang Y, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 2009;40(9):1234–43.

    Article 
    PubMed 

    Google Scholar 

  • Bai AHC, Milde T, Remke M, Rolli CG, Hielscher T, Cho YJ, et al. MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathol. 2012;123(4):529–38.

    Article 
    PubMed 

    Google Scholar 

  • Venkataraman S, Alimova I, Fan R, Harris P, Foreman N, Vibhakar R. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One. 2010;5(6):e10748.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue P, Huang S, Han X, Zhang C, Yang L, Xiao W, et al. Exosomal miR-101-3p and miR-423-5p inhibit medulloblastoma tumorigenesis through targeting FOXP4 and EZH2. Cell Death Differ. 2022;29(1):82–95.

    Article 
    PubMed 

    Google Scholar 

  • Zhang J, Li N, Fu J, Zhou W. Long noncoding RNA HOTAIR promotes medulloblastoma growth, migration and invasion by sponging miR-1/miR-206 and targeting YY1. Biomed Pharmacother. 2020;124:109887.

    Article 
    PubMed 

    Google Scholar 

  • Ji W, Zhe X, Li L, Cheng Y, Zhao X, Liang P, et al. Prognostic value of miR-137 in children with medulloblastoma and its regulatory effect on tumor progression. Neuromolecular Med. 2022;24(2):215–23.

    Article 
    PubMed 

    Google Scholar 

  • Miele E, Po A, Mastronuzzi A, Carai A, Besharat ZM, Pediconi N, et al. Downregulation of miR-326 and its host gene β-arrestin1 induces pro-survival activity of E2F1 and promotes medulloblastoma growth. Mol Oncol. 2021;15(2):523–42.

    Article 
    PubMed 

    Google Scholar 

  • Kanchan RK, Perumal N, Atri P, Chirravuri Venkata R, Thapa I, Klinkebiel DL, et al. MiR-1253 exerts tumor-suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7-H3). Brain Pathol. 2020;30(4):732–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, et al. Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther. 2010;6(4):521–9.

    Article 
    PubMed 

    Google Scholar 

  • Choi SA, Koh EJ, Kim RN, Byun JW, Phi JH, Yang J, et al. Extracellular vesicle-associated miR-135b and -135a regulate stemness in Group 4 medulloblastoma cells by targeting angiomotin-like 2. Cancer Cell Int. 2020;20(1):558.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hemmesi K, Squadrito ML, Mestdagh P, Conti V, Cominelli M, Piras IS, et al. miR-135a inhibits cancer stem cell-driven medulloblastoma development by directly repressing Arhgef6 expression. Stem Cells. 2015;33(5):1377–89.

    Article 
    PubMed 

    Google Scholar 

  • Tantawy M, Elzayat MG, Yehia D, Taha H. Identification of microRNA signature in different pediatric brain tumors. Genet Mol Biol. 2018;41(1):27–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lourdusamy A, Luo LZ, Storer LC, Cohen KJ, Resar L, Grundy RG. Transcriptomic analysis in pediatric spinal ependymoma reveals distinct molecular signatures. Oncotarget. 2017;8(70):115570–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lourdusamy A, Rahman R, Smith S, Grundy R. microRNA network analysis identifies miR-29 cluster as key regulator of LAMA2 in ependymoma. Acta Neuropathol Commun. 2015;3:26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pezuk JA, Salomão KB, Baroni M, Pereira CA, Geron L, Brassesco MS. Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors. Cancer Metastasis Rev. 2019;38(4):813–28.

    Article 
    PubMed 

    Google Scholar 

  • Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One. 2011;6(10):e25114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cipro Š, Belhajová M, Eckschlager T, Zámečník J. MicroRNA expression in pediatric intracranial ependymomas and their potential value for tumor grading. Oncol Lett. 2019;17(1):1379–83.

    PubMed 

    Google Scholar 

  • Margolin-Miller Y, Yanichkin N, Shichrur K, Toledano H, Ohali A, Tzaridis T, et al. Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma. Genes Chromosomes Cancer. 2017;56(8):639–50.

    Article 
    PubMed 

    Google Scholar 

  • Gruszka R, Zakrzewski K, Liberski PP, Zakrzewska M. mRNA and miRNA expression analyses of the MYC/E2F/miR-17-92 network in the most common pediatric brain tumors. Int J Mol Sci. 2021;22(2):543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu F, Dong H, Mei Z, Huang T. Investigation of miRNA and mRNA co-expression network in ependymoma. Front Bioeng Biotechnol. 2020;8:177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the pathophysiology of Alzheimer’s disease and potential therapeutic targets: a current perspective. J Alzheimers Dis. 2023;91(2):507–30.

    Article 
    PubMed 

    Google Scholar 

  • Zeliger HI Alzheimer’s disease. In: Oxidative stress [Internet]. Elsevier; 2023 [cited 2024 May 11]. pp. 291–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323918909000209

  • Ali B, M.S. Jamal Q, Shams S, A. Al-Wabel N, U. Siddiqui M, A. Alzohairy M, et al. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNSNDDT. 2016;15(5):624–8.

    Article 

    Google Scholar 

  • Silvestro S, Bramanti P, Mazzon E. Role of miRNAs in Alzheimer’s disease and possible fields of application. Int J Mol Sci. 2019;20(16):3979.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pogue AI, Lukiw WJ. Up-regulated pro-inflammatory MicroRNAs (miRNAs) in Alzheimer’s disease (AD) and age-related macular degeneration (AMD). Cell Mol Neurobiol. 2018;38(5):1021–31.

    Article 
    PubMed 

    Google Scholar 

  • Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One. 2015;10(5):e0126423.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu CG, Wang JL, Li L, Xue LX, Zhang YQ, Wang PC. MicroRNA-135a and -200b, potential biomarkers for Alzheimer׳s disease, regulate β secretase and amyloid precursor protein. Brain Res. 2014;1583:55–64.

    Article 
    PubMed 

    Google Scholar 

  • Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC. The serum exosome derived MicroRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci. 2018;31(2):87–96.

    PubMed 

    Google Scholar 

  • Szewczyk-Krolikowski K, Tomlinson P, Nithi K, Wade-Martins R, Talbot K, Ben-Shlomo Y, et al. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism Relat Disord. 2014;20(1):99–105.

    Article 
    PubMed 

    Google Scholar 

  • Wu T, Wang J, Wang C, Hallett M, Zang Y, Wu X, et al. Basal ganglia circuits changes in Parkinson’s disease patients. Neurosci Lett. 2012;524(1):55–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salemi M, Marchese G, Lanza G, Cosentino FII, Salluzzo MG, Schillaci FA, et al. Role and dysregulation of miRNA in patients with Parkinson’s disease. Int J Mol Sci. 2022;24(1):712.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gentile G, Morello G, La Cognata V, Guarnaccia M, Conforti FL, Cavallaro S. Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases. J Pers Med. 2022;12(5):770.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv K, Liu Y, Zheng Y, Dai S, Yin P, Miao H. Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol Res. 2021;54(1):10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Y, Liao S, Quan H, Lin Y, Li J, Yang Q. Involvement of microRNA-135a-5p in the protective effects of hydrogen sulfide against Parkinson’s disease. Cell Physiol Biochem. 2016;40(1–2):18–26.

    Article 
    PubMed 

    Google Scholar 

  • Zhang J, Liu W, Wang Y, Zhao S, Chang N. miR-135b plays a neuroprotective role by targeting GSK3β in MPP+-intoxicated SH-SY5Y cells. Dis Markers. 2017;2017:5806146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tolosa E, Botta-Orfila T, Morató X, Calatayud C, Ferrer-Lorente R, Martí MJ, et al. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging. 2018;69:283–91.

    Article 
    PubMed 

    Google Scholar 

  • Brotman RG, Moreno-Escobar MC, Joseph J, Pawar G. Amyotrophic lateral sclerosis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 May 11]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK556151/

  • Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagyinszky E, Hulme J, An SSA. Studies of genetic and proteomic risk factors of amyotrophic lateral sclerosis inspire biomarker development and gene therapy. Cells. 2023;12(15):1948.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–29.

    Article 
    PubMed 

    Google Scholar 

  • Freischmidt A, Müller K, Zondler L, Weydt P, Mayer B, von Arnim CAF, et al. Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2015;36(9):2660.e15–20.

    Article 
    PubMed 

    Google Scholar 

  • Pegoraro V, Merico A, Angelini C. Micro-RNAs in ALS muscle: differences in gender, age at onset and disease duration. J Neurol Sci. 2017;380:58–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.

    Article 
    PubMed 

    Google Scholar 

  • Gatto EM, Rojas NG, Persi G, Etcheverry JL, Cesarini ME, Perandones C. Huntington disease: advances in the understanding of its mechanisms. Clin Park Relat Disord. 2020;3:100056.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet. 1994;6(4):409–14.

    Article 
    PubMed 

    Google Scholar 

  • Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011;227(1):172–9.

    Article 
    PubMed 

    Google Scholar 

  • Tung CW, Huang PY, Chan SC, Cheng PH, Yang SH. The regulatory roles of microRNAs toward pathogenesis and treatments in Huntington’s disease. J Biomed Sci. 2021;28(1):59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reed ER, Latourelle JC, Bockholt JH, Bregu J, Smock J, Paulsen JS, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology. 2018;90(4):e264–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez B, Peplow PV. Altered microRNA expression in animal models of Huntington’s disease and potential therapeutic strategies. Neural Regen Res. 2021;16(11):2159–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis. 2008;29(3):438–45.

    Article 
    PubMed 

    Google Scholar 

  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci. 2008;28(53):14341–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodges H, Fealko C, Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr. 2020;9(Suppl 1):S55–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faras H, Al Ateeqi N, Tidmarsh L. Autism spectrum disorders. Ann Saudi Med. 2010;30(4):295–300.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrido-Torres N, Guzmán-Torres K, García-Cerro S, Pinilla Bermúdez G, Cruz-Baquero C, Ochoa H, et al. miRNAs as biomarkers of autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry. 2023;33(9):2957–2990

  • Sjaarda CP, Hecht P, McNaughton AJM, Zhou A, Hudson ML, Will MJ, et al. Interplay between maternal Slc6a4 mutation and prenatal stress: a possible mechanism for autistic behavior development. Sci Rep. 2017;7(1):8735.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sunwoo JS, Jeon D, Lee ST, Moon J, Yu JS, Park DK, et al. Maternal immune activation alters brain microRNA expression in mouse offspring. Ann Clin Transl Neurol. 2018;5(10):1264–76. Oct

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med. 2014;20(8):437–48. Aug

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh P, Singh M. MicroRNAs: the tiny robust players unraveling the multifaceted channels of pain. In: pain: causes, concerns and consequences [Internet]. BENTHAM SCIENCE PUBLISHERS; 2016 [cited 2024 May 11]. pp. 126–60. Available from: http://www.eurekaselect.com/node/146917

  • Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 2006;34(8):2294–304.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lui A, Do T, Alzayat O, Yu N, Phyu S, Santuya HJ, et al. Tumor suppressor MicroRNAs in clinical and preclinical trials for neurological disorders. Pharmaceuticals. 2024;17(4):426.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.

    Article 
    PubMed 

    Google Scholar 

  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.

    Article 
    PubMed 

    Google Scholar 

  • Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laganà A, Acunzo M, Romano G, Pulvirenti A, Veneziano D, Cascione L, et al. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res. 2014;42(9):5416–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakai A, Suzuki H. Emerging roles of microRNAs in chronic pain. Neurochem Int. 2014;77:58–67.

    Article 
    PubMed 

    Google Scholar 

  • Wang Y, Wang Z, Shao C, Lu G, Xie M, Wang J, et al. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis. J Pineal Res. 2022;73(2):e12813.

    Article 
    PubMed 

    Google Scholar 

  • Yao D, Cui H, Zhou S, Guo L. Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2. Tumour Biol. 2017;39(10):1010428317712443.

    Article 
    PubMed 

    Google Scholar 

  • Zhong M, Che L, Du M, Liu K, Wang D. Desflurane protects against liver ischemia/reperfusion injury via regulating miR-135b-5p. J Chin Med Assoc. 2021;84(1):38–45.

    Article 
    PubMed 

    Google Scholar 

  • Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83(2):344–60.

    Article 
    PubMed 

    Google Scholar 

  • Wang Y, Yang Z, Zhang K, Wan Y, Zhou Y, Yang Z. miR-135a-5p inhibitor protects glial cells against apoptosis via targeting SIRT1 in epilepsy. Exp Ther Med. 2021;21(5):431.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez-Roman N, Stevenson K, Gilmour L, Hamilton G, Chalmers AJ. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro Oncol. 2017;19(2):229–41.

    PubMed 

    Google Scholar 

  • Fedorova V, Pospisilova V, Vanova T, Amruz Cerna K, Abaffy P, Sedmik J, et al. Glioblastoma and cerebral organoids: development and analysis of an in vitro model for glioblastoma migration. Mol Oncol. 2023;17(4):647–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verduin M, Hoosemans L, Vanmechelen M, van Heumen M, Piepers JAF, Astuti G, et al. Patient-derived glioblastoma organoids reflect tumor heterogeneity and treatment sensitivity. Neurooncol Adv. 2023;5(1):vdad152.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gamboa CM, Jara K, Pamarthy S, Liu L, Aiken R, Xiong Z, et al. Generation of glioblastoma patient-derived organoids and mouse brain orthotopic xenografts for drug screening. STAR Protoc. 2021;2(1):100345.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guyon J, Daubon T. Histological analysis of invasive glioblastoma organoids embedded in a 3D collagen matrix. STAR Protoc. 2023;4(3):102521.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darrigues E, Zhao EH, De Loose A, Lee MP, Borrelli MJ, Eoff RL, et al. Biobanked glioblastoma patient-derived organoids as a precision medicine model to study inhibition of invasion. Int J Mol Sci. 2021;22(19):10720.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdullah KG, Bird CE, Buehler JD, Gattie LC, Savani MR, Sternisha AC, et al. Establishment of patient-derived organoid models of lower-grade glioma. Neuro Oncol. 2022;24(4):612–23.

    Article 
    PubMed 

    Google Scholar 

  • Linkous A, Balamatsias D, Snuderl M, Edwards L, Miyaguchi K, Milner T, et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 2019;26(12):3203–3211.e5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogawa J, Pao GM, Shokhirev MN, Verma IM. Glioblastoma model using human cerebral organoids. Cell Rep. 2018;23(4):1220–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krieger TG, Tirier SM, Park J, Jechow K, Eisemann T, Peterziel H, et al. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol. 2020;22(8):1138–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020;140(6):919–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leite DM, Zvar Baskovic B, Civita P, Neto C, Gumbleton M, Pilkington GJ. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics. FASEB J. 2020;34(1):1710–27.

    Article 
    PubMed 

    Google Scholar 

  • Watanabe F, Hollingsworth EW, Bartley JM, Wisehart L, Desai R, Hartlaub AM, et al. Patient-derived organoids recapitulate glioma-intrinsic immune program and progenitor populations of glioblastoma. PNAS Nexus 2024;3(2):pgae051.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frisira E, Rashid F, Varma SN, Badodi S, Benjamin-Ombo VA, Michod D, et al. NPI-0052 and γ-radiation induce a synergistic apoptotic effect in medulloblastoma. Cell Death Dis. 2019;10(11):785.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11(1):583.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lago C, Gianesello M, Santomaso L, Leva G, Ballabio C, Anderle M, et al. Medulloblastoma and high-grade glioma organoids for drug screening, lineage tracing, co-culture and in vivo assay. Nat Protoc. 2023;18(7):2143–80.

    Article 
    PubMed 

    Google Scholar 

  • Yeh M, Wang YY, Yoo JY, Oh C, Otani Y, Kang JM, et al. MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Sci Rep. 2021;11(1):9219.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Z, Liu Y, Li L, Xu Z, Bi B, Wang Y, et al. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumour Biol. 2014;35(10):10177–84.

    Article 
    PubMed 

    Google Scholar 

  • Wu D-G, Wang Y-Y, Fan L-G, Luo H, Han B, Sun L-H, et al. MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J. 2011;124(17):2616–21.

    PubMed 

    Google Scholar 

  • Li Q, Wang C, Cai L, Lu J, Zhu Z, Wang C, et al. miR‑34a derived from mesenchymal stem cells stimulates senescence in glioma cells by inducing DNA damage. Mol Med Rep. 2019;19(3):1849–57.

    PubMed 

    Google Scholar 

  • Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41(2):67–74.

    Article 
    PubMed 

    Google Scholar 

  • Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene 2011;30(7):806–21.

    Article 
    PubMed 

    Google Scholar 

  • Hong S, You JY, Paek K, Park J, Kang SJ, Han EH, et al. Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Theranostics 2021;11(19):9687–704.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaur AB, Holbeck SL, Colburn NH, Israel MA. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 2011;13(6):580–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A, et al. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem. 2014;289(36):25079–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwak HJ, Kim YJ, Chun KR, Woo YM, Park SJ, Jeong JA, et al. Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 2011;30(21):2433–42.

    Article 
    PubMed 

    Google Scholar 

  • Schramedei K, Mörbt N, Pfeifer G, Läuter J, Rosolowski M, Tomm JM, et al. MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 2011;30(26):2975–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28(17):5369–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res. 2011;71(10):3563–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S, et al. Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol. 2013;112(2):153–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, et al. The myc-miR-17–92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res. 2010;70(20):8233–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu C, Wang Q, Yan X, Wang J. Prognostic and microRNA profile analysis for CD44 positive expression pediatric posterior fossa ependymoma. Clin Transl Oncol. 2018;20(11):1439–47.

    Article 
    PubMed 

    Google Scholar 

  • Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, et al. MicroRNAs in Alzheimer’s disease: potential diagnostic markers and therapeutic targets. Biomed Pharmacother. 2022;148:112681.

    Article 
    PubMed 

    Google Scholar 

  • Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL. MicroRNA dysregulation in parkinson’s disease: a narrative review. Front Neurosci. 2021;15:660379.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AWS, et al. miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet. 2013;93(2):306–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raheja R, Regev K, Healy BC, Mazzola MA, Beynon V, Von Glehn F, et al. Correlating serum micrornas and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve. 2018;58(2):261–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Léger B, et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis. 2013;49:107–17.

    Article 
    PubMed 

    Google Scholar 

  • De Felice B, Guida M, Guida M, Coppola C, De Mieri G, Cotrufo R. A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 2012;508(1):35–40.

    Article 
    PubMed 

    Google Scholar 

  • Vrabec K, Boštjančič E, Koritnik B, Leonardis L, Dolenc Grošelj L, Zidar J, et al. Differential expression of several miRNAs and the host genes AATK and DNM2 in leukocytes of sporadic ALS patients. Front Mol Neurosci. 2018;11:106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 2010;5(7):656–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.